
The 30 Year Horizon

Manuel Bronstein William Burge T imothy Daly
James Davenport Michael Dewar Martin Dunstan
Albrecht Fortenbacher Patrizia Gianni Johannes Grabmeier
Jocelyn Guidry Richard Jenks Larry Lambe
Michael Monagan Scott Morrison William Sit
Jonathan Steinbach Robert Sutor Barry Trager
Stephen Watt Jim Wen Clifton Williamson

Volume 3: Axiom Programmers Guide

i

Portions Copyright (c) 2005 Timothy Daly

The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry

Portions Copyright (c) 2004 Martin Dunstan

Portions Copyright (c) 2007 Alfredo Portes

Portions Copyright (c) 2007 Arthur Ralfs

Portions Copyright (c) 2005 Timothy Daly

Portions Copyright (c) 1991-2002,

The Numerical ALgorithms Group Ltd.

All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or

without modification, are permitted provided that the following

conditions are

met:

- Redistributions of source code must retain the above

copyright notice, this list of conditions and the

following disclaimer.

- Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other

materials provided with the distribution.

- Neither the name of The Numerical ALgorithms Group Ltd.

nor the names of its contributors may be used to endorse

or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

ii

Inclusion of names in the list of credits is based on historical information and is as accurate
as possible. Inclusion of names does not in any way imply an endorsement but represents
historical influence on Axiom development.

iii

Michael Albaugh Cyril Alberga Roy Adler
Christian Aistleitner Richard Anderson George Andrews
S.J. Atkins Jeremy Avigad Henry Baker
Martin Baker Stephen Balzac Yurij Baransky
David R. Barton Thomas Baruchel Gerald Baumgartner
Gilbert Baumslag Michael Becker Nelson H. F. Beebe
Jay Belanger David Bindel Fred Blair
Vladimir Bondarenko Mark Botch Raoul Bourquin
Alexandre Bouyer Karen Braman Wolfgang Brehm
Peter A. Broadbery Martin Brock Manuel Bronstein
Christopher Brown Stephen Buchwald Florian Bundschuh
Luanne Burns William Burge Ralph Byers
Quentin Carpent Pierre Casteran Robert Cavines
Bruce Char Ondrej Certik Tzu-Yi Chen
Bobby Cheng Cheekai Chin David V. Chudnovsky
Gregory V. Chudnovsky Mark Clements James Cloos
Jia Zhao Cong Josh Cohen Christophe Conil
Don Coppersmith George Corliss Robert Corless
Gary Cornell Meino Cramer Jeremy Du Croz
David Cyganski Nathaniel Daly Timothy Daly Sr.
Timothy Daly Jr. James H. Davenport David Day
James Demmel Didier Deshommes Michael Dewar
Inderjit Dhillon Jack Dongarra Jean Della Dora
Gabriel Dos Reis Claire DiCrescendo Sam Dooley
Zlatko Drmac Lionel Ducos Iain Duff
Lee Duhem Martin Dunstan Brian Dupee
Dominique Duval Robert Edwards Heow Eide-Goodman
Lars Erickson Mark Fahey Richard Fateman
Bertfried Fauser Stuart Feldman John Fletcher
Brian Ford Albrecht Fortenbacher George Frances
Constantine Frangos Timothy Freeman Korrinn Fu
Marc Gaetano Rudiger Gebauer Van de Geijn
Kathy Gerber Patricia Gianni Gustavo Goertkin
Samantha Goldrich Holger Gollan Teresa Gomez-Diaz
Laureano Gonzalez-Vega Stephen Gortler Johannes Grabmeier
Matt Grayson Klaus Ebbe Grue James Griesmer
Vladimir Grinberg Oswald Gschnitzer Ming Gu
Jocelyn Guidry Gaetan Hache Steve Hague
Satoshi Hamaguchi Sven Hammarling Mike Hansen
Richard Hanson Richard Harke Bill Hart
Vilya Harvey Martin Hassner Arthur S. Hathaway
Dan Hatton Waldek Hebisch Karl Hegbloom
Ralf Hemmecke Henderson Antoine Hersen
Nicholas J. Higham Hoon Hong Roger House
Gernot Hueber Pietro Iglio Alejandro Jakubi
Richard Jenks Bo Kagstrom William Kahan
Kyriakos Kalorkoti Kai Kaminski Grant Keady
Wilfrid Kendall Tony Kennedy David Kincaid
Keshav Kini Ted Kosan Paul Kosinski
Igor Kozachenko Fred Krogh Klaus Kusche

iv

Bernhard Kutzler Tim Lahey Larry Lambe
Kaj Laurson Charles Lawson George L. Legendre
Franz Lehner Frederic Lehobey Michel Levaud
Howard Levy J. Lewis Ren-Cang Li
Rudiger Loos Craig Lucas Michael Lucks
Richard Luczak Camm Maguire Francois Maltey
Osni Marques Alasdair McAndrew Bob McElrath
Michael McGettrick Edi Meier Ian Meikle
David Mentre Victor S. Miller Gerard Milmeister
Mohammed Mobarak H. Michael Moeller Michael Monagan
Marc Moreno-Maza Scott Morrison Joel Moses
Mark Murray William Naylor Patrice Naudin
C. Andrew Neff John Nelder Godfrey Nolan
Arthur Norman Jinzhong Niu Michael O’Connor
Summat Oemrawsingh Kostas Oikonomou Humberto Ortiz-Zuazaga
Julian A. Padget Bill Page David Parnas
Susan Pelzel Michel Petitot Didier Pinchon
Ayal Pinkus Frederick H. Pitts Frank Pfenning
Jose Alfredo Portes E. Quintana-Orti Gregorio Quintana-Orti
Beresford Parlett A. Petitet Andre Platzer
Peter Poromaas Claude Quitte Arthur C. Ralfs
Norman Ramsey Anatoly Raportirenko Guilherme Reis
Huan Ren Albert D. Rich Michael Richardson
Jason Riedy Renaud Rioboo Jean Rivlin
Nicolas Robidoux Simon Robinson Raymond Rogers
Michael Rothstein Martin Rubey Jeff Rutter
Philip Santas Alfred Scheerhorn William Schelter
Gerhard Schneider Martin Schoenert Marshall Schor
Frithjof Schulze Fritz Schwarz Steven Segletes
V. Sima Nick Simicich William Sit
Elena Smirnova Jacob Nyffeler Smith Matthieu Sozeau
Ken Stanley Jonathan Steinbach Fabio Stumbo
Christine Sundaresan Klaus Sutner Robert Sutor
Moss E. Sweedler Eugene Surowitz Max Tegmark
T. Doug Telford James Thatcher Laurent Thery
Balbir Thomas Mike Thomas Dylan Thurston
Francoise Tisseur Steve Toleque Raymond Toy
Barry Trager Themos T. Tsikas Gregory Vanuxem
Kresimir Veselic Christof Voemel Bernhard Wall
Stephen Watt Andreas Weber Jaap Weel
Juergen Weiss M. Weller Mark Wegman
James Wen Thorsten Werther Michael Wester
R. Clint Whaley James T. Wheeler John M. Wiley
Berhard Will Clifton J. Williamson Stephen Wilson
Shmuel Winograd Robert Wisbauer Sandra Wityak
Waldemar Wiwianka Knut Wolf Yanyang Xiao
Liu Xiaojun Clifford Yapp David Yun
Qian Yun Vadim Zhytnikov Richard Zippel
Evelyn Zoernack Bruno Zuercher Dan Zwillinger

Contents

1 A Language for Computational Algebra 1

1.1 Introduction . 1

1.2 Concepts . 4

2 Details for Programmers 11

2.1 Examining Internals . 11

2.2 Makefile . 13

Bibliography 15

v

vi CONTENTS

New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))

Chapter 1

A Language for Computational
Algebra by Jenks and Trager

1.1 Introduction

Jenks and Trager[Jenk81] describe a language with parameterized types and generic opera-
tors particularly suited to computational algebra. A flexible framework is given for building
algebraic structures and defining algorithms which work in as general a setting as possible.
This section will be an overview of our main concepts: “domains” and “categories”.

A language for computational algebra should be able to express algorithms for dealing with
algebraic objects at their most natural level of abstraction. We can illustrate this concept
with two simple algorithms. First, we wish to write a function max which computes the
maximum of two elements of any set on which an ordering predicate is defined. One approach
to this problem is to explicitly pass the ordering predicate as an additional argument to max.
Thus max might be defined by

max(x,y,lessThan) == if lessThan(x,y) then y else x

where lessThan is the ordering predicate. In more complicated algorithms, the number
of additional arguments required gets out of hand. Our approach is instead to require the
arguments x and y of max to be elements of some specific algebraic structure which has a “less
than” operation ’<’ implemented by some function. We will call such algebraic structures
domains. Thus ’<’ is a “generic” operation which has different function definitions for
different domains. Our definition of max, with suitable declarations, becomes:

max(x,y) == if x < y then y else x

The requirement that a generic operation have a particular name does not characterize its
algebraic properties. In the above definition of max, it is implicitly assumed that ’<’ provides
a total ordering on the elements of its domain. To this end, our domains will also have a set
of attributes which permit a description of the algebraic properties of its operations (e.g. so
as to distinguish between totally-ordered and partially-ordered sets).

As a second example, we examine the classical algorithm for computing the gcd, the greatest
common divisor, of two integers:

gcd(x,y) == if x = 0 then y else gcd(y,remainder(x,y))

1

2 CHAPTER 1. A LANGUAGE FOR COMPUTATIONAL ALGEBRA

Although this algorithm was originally intended to be used only on integers, a cursory
examination shows that only a few properties of the integers are actually required. In fact,
the same algorithm can be used on gaussian integers, polynomials over fields, or any other
domain which has an appropriate remainder function. We wish to specify the minimum
requirements of an algebraic structure for the gcd algorithm to be applicable. To do this, we
introduce a grouping of domains called a category, in this case, “the category of Euclidean
domains”. Any domain of this category will be an integral domain with a generic function
remainder satisfying two requirements. The first is that

remainder(x,y) = x - q*x*y

for some q in the domain as this implies

gcd(x,y) - gcd(y,remainder(x,y))

The remainder function must also have the property that the remainder sequence generated
by any two elements of the domain always reaches 0 in a finite number of steps. These two
requirements are sufficient to guarantee the correctness of our gcd algorithm.

Categories provide a set of required generic operations together with a set of attributes
describing the required algebraic properties of these operations. Domains provide specific
functions which implement the operations and satisfy the attributes. Thus we may speak of
“the category of totally-ordered sets” as the class of all domains which have the above ’<’
operation with specific algebraic properties, and “the domain of the integers” as an example
of a member of that category since it has a function ’integer<’ which provides that operation
and satisfies those properties.

Once an abstract algorithm has been written, its author specifies the category of domains
to which it applies, either by explicitly listing the operations and attributes it requires or by
referencing a predefined category. For example, having defined the category EuclideanDo-
main (“the category of Euclidean domains”), a complete definition of the gcd function could
be written:

gcd(x:R,y:R):R where R:EuclideanDomain ==

if x=0 then y else gcd(y,remainder(x,y))

Expressions of the form “A:B” are called declarations. The arguments x and y of gcd are
declared to be elements of some domain R which, in turn, is declared to be a member of
EuclideanDomain. Declaring “A:B” means “A is a member of B” in the following sense.
Declaring a domain to be a member of a category indicates that all the operations of the
category are implemented in that domain as functions which satisfy the attributes of the
category. Similarly declaring an object to be a member of a domain means that all the
functions provided in that domain are applicable to the object.

Domains and categories are both computed objects that can be assigned to a variable, passed
as arguments, and returned from functions. A category may be produced by explicitly listing
operations and attributes, or by invoking a function which returns a category. Categories
may be augmented, diminished, or “joined” with other categories to produce a new category
containing all of the operations and attributes of the individual categories.

A domain is always created by a function which we call a functor. Some simple domains
are “the integers” and “the booleans” which are produced by functors of no arguments.
Other domains such as “the integers mod 7” are produced by functors which take arguments
(such as the modulus 7). Most algebraic domains are built up from other domains which,
along with other parameters, are passed as arguments to the functors that construct them.
For example, the domain “polynomials in X over the integers” is created by a polynomial

1.1. INTRODUCTION 3

functor which takes a variable (e.g. “X”) and an underlying domain (e.g. “the integers”)
as arguments. With the few exceptions noted in the next section, functors and categories
are definable in the language and may be freely modified. A user is free to introduce new
categories and define new functors in order to make more domains available for computation.

Max and gcd were both defined in terms of generic operations from domains implicitly passed
as arguments. As required by some algebraic algorithms, domains are dynamically created
and assigned to local variables. Objects of these newly created local domains can be created,
manipulated, and converted to objects of other domains.

Figure 1: Algebraic Categories
category extends operations
Set =
AbelianGroup Set 0,+,−
OrderedSet Set <
QuotientObject(S:Set) Set reduce,lift
SemiGroup Set ×
Finite Set size,random
Monoid SemiGroup 1
Group Monoid inv
Ring (Monoid,AG) characteristic, recip
Module(R:Ring) AbelianGroup scalar×
Algebra(R:Ring) (Ring,Module(R))
DifferentialRing Ring deriv
IntegralDomain Ring isAssociate./ /
SkewField Ring /
UniqueFactorizationDomain IntegralDomain gcd, factor, isPrime
EuclideanDomain UFD size¡, quo, rem
Field (ED, SkewField)
GaloisField (Field, Finite)
VectorSpace(S:Field) Module(S)

Both categories and domains may be organized into hierarchies. Figure 1 shows an algebraic
hierarchy of categories, listing the operations (but not the attributes) introduced by the
successive categories. Set is a category with a single operation ’=’. SemiGroup extends Set
by adding an operation ’×’ etc. More complicated cases will be discussed in the next section.
We will also allow one domain to extend another.

For example, one can write a “free-module functor” to provide the module-theoretic aspects
of a polynomial ring (additon and multiplication by scalars). One can then write various
polynomial, algebraic-extension, and sparse-matrix functors as extensions of the free-module
functor. The polynomial functor, for example, would augment the functions provided by the
free-module functor, adding explicit definitions only for the other polynomal functions such
as multiplication. Similarly, a “localization functor” can be written to provide computations
where denominators may be from a different domain than that of the numerator, such as
“the odd integers”, “powers of 2”, “products of factored polynomials in X”. The localization
functor is thus a function of two arguments, one for the numerator domain, the other for
the denominator domain. A “quotient field functor” can then be written which extends
the localization functor for the special case when the two argument domains are the same
integral domain. From the quotient field functor, one can produce all of the rational function
domains and “the rational numbers” as special cases.

4 CHAPTER 1. A LANGUAGE FOR COMPUTATIONAL ALGEBRA

To summarize, our language design provides the useful notions of “domains” and “cate-
gories” for the abstract description of algorithms for computational algebra. The facility
for categories is unique to our language and its use seems to be invaluable for describing
algorithms for computational algebra. Our domains are similar to “modes” in EL1[Wegb74]
and “types” in RUSSELL[Deme79] and ADAPT[Leve80]. As in EL1, but in contrast to
Ada[ADAx83], domains are computed values. Our notions of categories and functors are
based on concepts in universal algebra [Cohn65] developed by the ADJ group [That82] and
Burstall and Goguen [Burs77]. In addition, categories extend the idea of “type constraint” in
CLU [Lisk79] and Alphard [Wulf76] where functions can require that their arguments have
certain operations available to them. For related work in computer algebra, see [Ausi79],
[Gris76], [Jenk74], and [Loos74].

1.2 Concepts

In this section, we give precise definitions and examples of the concepts of domain, category,
and functor.

Domain. By a domain of computation, or, simply, domain, we mean:

1. a set of generic operations

2. a representation

3. a set of functions which implement the operations in terms of the representation

4. a set of attributes, which designate useful facts such as axioms and mathematical
theorems which are true for the operations as implemented by the functions.

The simplest examples of domains are those corresponding to the basic data-types offered
by the underlying system, such as Integer (“the integers”), Boolean (“the booleans”), etc.
Other examples of domains are RationalNumber (“the rational numbers”), Matrix(Integer)
(“rectangular matrices with integer coefficients”), and Polynomial(X,RationalNumber) (“the
polynomials in X with rational number coefficients”).

The generic operations are given by signatures, expressions consisting of an operation
name, a source, and a target. The domain Integer, for example, has the operation “less
than” expressed by the signture:

‘ < ‘ : (Integer, Integer)→ Boolean

with ’<’ as operation name, (Integer,Integer) as source, and Boolean as target. The source
part of the signature is any sequence of domains, and the target part is any domain.

The representation for a domain describes a data structure used to represent the objects of
the domain.

The functions component is a set of compiled functions providing a domain-specific imple-
mentation for each generic operation. For example, domain Integer has a function “Integer<”
which implements “less than”. If a domain has an operation signature

op :(D1, . . . , Dn)→ D0

then the associated function must take arguments from the representations of D1, . . . , Dn

respectively and return a result in the representation of D0.

The attribute component of a domain is described either by a name, e.g. “finite”, or by
a form with operator names as parameters, e.g. “distributive(’×’,’+’)”. The purpose of

1.2. CONCEPTS 5

attributes is not to provide complete axiomatic descriptions of an operation, rather to assert
facts which programs can query.

Category A “category” designates a class of domains with common operations and at-
tributes but with different functions and representations. The categories of interest here will
be those of algebraic structures such as Ring (“the class of all rings”), Field (“the class of
all fields”), and Set (“the class of all sets”).

By a category we mean:

1. a set of generic operations

2. a set of attributes, which designate facts which must be true for any implementation
of the operations.

As with domains, the generic operations of categories are given by signatures, consisting of
an operation name, a source, and a target. In addition to the domains which may appear
in the source and target, a special symbol $ (or, later %) is used to designate an arbitrary
member domain of the category. The set of operations and attributes are those which member
domains have in common. A simple example of a category is Set, a category which has one
operation

=: ($, $)→ Boolean

and no attributes. Another is SemiGroup, which besides the ’=’ operation, has the operation

× : ($, $)→ $

and the attribute associative(’×’).
We say a domain D is “a member of” a category C, equivalently, D is of C, if D contains
every operation and attribute of C with $ replaced by D. For example, Integer is of Set
because it contains an operation

=: (Integer, Integer)→ Boolean

We say that a category B extends a category A if all of the operations and attributes of A are
contained in B. SemiGroup extends Set since all of the operations (’=’) of Set are contained
in SemiGroup.

Figure 2. Examples of Category Definitions

Set: Category == category
[operations] =:($,$) → Boolean

SemiGroup: Category == Set with
[operations] ×:($,$) → $
[attributes] associative(’×’) [(x× y)× z = x× (y × z)]

Figure 2 illustrate our language for defining categories. Set is defined by explicitly listing
its operations (’=’) and its attributes (none). SemiGroup is defined as an extension of Set.
Square-bracketed expressions are comments. The ’==’ signifies a rewrite-rule definition for
the category Set. Evaluation of “Set” causes “Set” to be rewritten by the category value
indicated to the right of the ’==’. Evaluation of “SemiGroup” similary causes “SemiGroup”
to be rewritten by the corresponding right-hand expression. Further evaluation causes Set to
be replaced by its value, a category to which the ’×’ operation and associative(’×’) attribute

6 CHAPTER 1. A LANGUAGE FOR COMPUTATIONAL ALGEBRA

are added by the with operation. As implied by this evaluation mechanism, two categories
are equivalent iff they have equivalent sets of operations and attributes, irrespecitive of how
they were created.

Figure 3. Examples of Category Definitions

Module(R:Ring) : Category == AbelianGroup with
[operations] ×:(R,$) → $
[attributes] . . .

Algebra(R:Ring) : Category == (Ring,Module(R)) with
[attributes] . . .

Figure 3 gives two examples of parameterized categories, that is, categories that are produced
by functions of one or more arguments. The function Module creates the category of all R-
modules, that is, modules over a given ring R. For example, the function Module applied to
Integer produces the category of all Z-modules, domains D which are abelian groups with
the additional operations

× : (Integer,D)→ Integer

.

This category includes domain Integer since Integer is an abelian group and has the operation

× : (Integer, Integer)→ Integer

.

The function Algebra(R) extends the join of a Ring and a Module(R), written (Ring,Module(R)).
The join designates the category formed by directly combining the operations and attributes
of Ring with those of Module(R).

Another way of parameterizing categories is by operator names. For example, the above
definition of SemiGroup could be extended to take a binary operation as a parameter:

SemiGroup(op) : Category == Set with
[operations] op: ($,$) → $
[attributes] associative(op) [op(op(x, y), z) = op(x, op(y, z))]

after which we may refer to the multiplicative form of SemiGroup in Figure 2 by SemiGroup(’×’).
Functor By a functor we mean any function which returns a domain. A functor creates
a domain, a member of some category. A category never creates anything: it simply acts
as a template for domains, describing which operations and attributes must be present. A
functor creates a domain by storing functions into a template given by its target category.
Categories never specify representations for objects; functors always do.

Domains can only be produced by functors. Basic domains (e.g. “the integers”) are pro-
duced through functors bound to identifiers (e.g. Integer). In addition, four built-in func-
tors, List Vector, Struct, and Union, build aggregate domains from other domains passed
as arguments. The functor List can be applied to any domain (e.g. Integer) to produce
a composite domain (e.g. List(Integer)) with a set of functions which provide operations
on lists (e.g. first, rest, cons). The functor Vector takes two arguments, a positive integer
n and a domain D, and produces the domain “the set of all vectors of length n with ele-
ments from D”. Struct produces a domain represented by a set of name-value pairs, e.g.

1.2. CONCEPTS 7

Struct(real:Integer,imag:Integer) describes an appropriate representation for “the Gaussian
integers”. Union(A,. . .,B) creates a new domain D form the domains A, . . . , B which is the
disjoint union of the domains A, . . . , B.

The language permits the building of new functors from these basic functors. A simple
example is FiniteField in Figure 4.

Figure 4. Example of Functor Definition

FiniteField(p:PrimeNumber) : GaloisField ==
capsule

[representation]
Rep := Integer

[declarations]
x,y : $

[definitions]
0 == Integer.0
1 == Integer.1
x+y == if (w ← x Integer.+ y) > p

then w - p
else w

· · ·

The functor FiniteField applied to p, a prime number, creates a domain “the integers modulo
p”, a member of its target category GaloisField (“the class of all Galois fields”). The set of
operations and attributes of this domain are given by GaloisField, the representation and set
of functions, by the capsule part of the definition which appears to the right of the ‘==’. The
representation is always defined by the distinguished symbol Rep in terms of a “lower level”
functor. For FiniteFields, Rep is defined to be Integer (meaning that elements of a finite
field are represented by integers). In a more complicated example, Rep might be defined
in terms of a functor Matrix, whose Rep, in turn, might be defined in terms of the built-in
functor Vector.

Figure 5. Example of Functor Definition

IntegerMod(m:Integer — m > 1): T == C where
T == (Ring,Finite) with

if isPrime m then GaloisField
C == capsule

· · ·
[definitions]

if isPrime m then
x / y == . . .

· · ·

Figure 5 illustrates the use of conditional expressions to make the target category of a
functor depend upon the paramters of the functor. Here the FiniteField functor of Figure
4 is generalized to IntegerMod, a functor which produces the domain “the integers modulo
m” for any positive integer (modulus) m. The domain produced by the IntegerMod functor

8 CHAPTER 1. A LANGUAGE FOR COMPUTATIONAL ALGEBRA

will be a Galois field if m is prime, a finite ring, if it is not. Conditional expressions are also
used in the capsule part of a functor to conditionally provide functions (e.g the operation
’/’ will be provided by IntegerMod only if m is prime), or to provide alternative versions
of functions (e.g. more efficient implementations for some functions when the modulus is
small).

Figure 6 illustrates a series of functors for localization which illustrate how domains, like
categories, can be extended. Localize takes an R-module M, and a denominator domain D
which is a monoid contained within R. It produces an R-module of “fractions”. LocalAlgebra
augments this with a definition of multiplication for fractions producing the localization of an
R-algebra. QuotientField uses LocalAlgebra to produce a “field of fractions” in the special
situation where the numerators and denominators both come from the same integral domain.
When R has a gcd function, QuotientField redefines the arithmetic operations (supplied by
LocalAlgebra) to produce reduced fractions. Similarly, if R has a derivation defined for it,
QuotientField extends this derivation to the field of fractions.

Conclusions Our language provides the useful notions of “domains” and “categories” for
the abstract description of algorithms for computational algebra. Domains are the algebraic
structures on which computation is performed. Categories are groupings of domains with
common operations and attributes.

There are several advantages to our design. Algorithms can be written to operate over any
group, ring, or field, independently of how that algebraic structure is defined or represented
in the computer. The algorithm implementor need not know about which domains have
actually been created. Rather they need only specify a category which gives the required
operations and essential algebraic properties of the algorithm. Also, as required by many
algebraic algorithms, domains and categories are dynamically computed objects.

The language we have presented leads to a computer algebra system which is easily extended
by any user. All categories are defined in the language and are available for user modification.
All domains are created by functions which, with the exception of a few that are built-in, are
also defined in the language and can be changed by the user. New domains and categories
can be designed and implemented with minimal effort by extending or combining existing
structures.

The language permits considerable code economy. An algorithm is implemented by a single
function which is applicable to any domain of a declared category. A matrix functor, for
example, will use the same compiled function to compute the product of two matrices, re-
gardless of whether the actual matrix coefficents are integers, polynomials, or other matrices.
Parameterized functors help to minimize redundant code by providing a set of pre-compiled
functions for all domains they can produce. The universal applicability of such functors as
QuotientField provide powerful methods for constructing new algebraic objects.

Our primary goal in presenting a language which deals with algebraic objects was to take
advantage of as much of the structure implicit in the problem domain as possible. The
natural algebraic notions of domains extending one another, and collecting domains with
common properties into categories have been show to be useful computational devices. By
preserving this natural structure, we hope to have eased the task of finding computational
models for algebraic structures.

1.2. CONCEPTS 9

Figure 6. Definition of Localization Functors

Localize(isZeroDivisor,M,D) : Module(R) == C where
R:Ring
M: Module(R)
D: Monoid | D ⊆ R
isZeroDivisor: M → Boolean
C == capsule . . .

[representation]
Rep := Struct(num:M, den:D)

[declarations]
x,y: $
n: Integer
r:R ; d:D

[definitions]
0 == Rep(0,1)
-x == Rep(-x.num,x.den)
x=y == isZeroDivisor(y.den × x.num - x.den × y.num)
x+y == Rep(y.den × x.num + x.den × y.num, x.den × y.den)
n × x == Rep(n × x.num,x.den)
r × x == if r=x.den then Rep(x.num,1) else Rep(r × x.num,x.den)
x / d == Rep(x.num,d × x.den)

LocalAlgebra(isZeroDivisor,A,D): T == C where
R: Ring
A: Algebra(R)
isZeroDivisor: A → Boolean
D: Monoid | D ⊆ R
T == Algebra(R) with if A has commutative(’×’) then commutative(’×’)
C == Localize(isZeroDivisor,A,D) add . . .

1 == Rep(1,1)
x × y == Rep(x.num × y.num, x.den × y.den)
characteristic == A.characteristic

QuotientField(R; IntegralDomain) : T == C where
T == (Field,Algebra(R)) with if R of DifferentialRing then DifferentialRing
C == LocalAlgebra($1 = 0,R,R) add . . .

if R has gcd: (R,R) → R then
x + y == . . .
x × y == . . .
where cancelGcd(x:$):$ == . . .

if R of DifferentialRing then
if R has gcd: (R,R) → R

then deriv(x) == . . .
else deriv(x) == . . .

RationalFunction(x:Expression, R:Ring) == QuotientField(Polynomial(x,R))

RationalNumber == QuotientField(Integer)

10 CHAPTER 1. A LANGUAGE FOR COMPUTATIONAL ALGEBRA

Chapter 2

Details for Programmers

Axiom maintains internal representations for domains. There are functions for examining
the internals of objects of a particular domain.

2.1 Examining Internals

One useful function is devaluate which takes an object and returns a Lisp pair. The CAR of
the pair is the Axiom type. The CDR of the pair is the object representation. For instances,
consider the session where we create a list of objects using the domain List(Any).

(1) -> w:=[1,7.2,"luanne",3*x^2+5,_

(3*x^2+5)::FRAC(POLY(INT)),_

(3*x^2+5)::POLY(FRAC(INT)),_

(3*x^2+5)::EXPR(INT)]$LIST(ANY)

2 2 2 2

(1) [1,7.2,"luanne",3x + 5,3x + 5,3x + 5,3x + 5]

Type: List(Any)

The first object, 1 is a primitive object that has the domain PI and uses the underlying Lisp
representation for the number.

(2) -> devaluate(1)$Lisp

(2) 1

Type: SExpression

The second object, 7.2 is a primitive object that has the domain FLOAT and uses the
underlying Lisp representation for the number, in this case, itself a pair whose CAR is the
floating point base and whose CDR is the mantissa,

(3) -> devaluate(7.2)$Lisp

(3) (265633114661417543270 . - 65)

Type: SExpression

The third object, ”luanne” is from the domain STRING and uses the Lisp string repre-
sentation.

11

12 CHAPTER 2. DETAILS FOR PROGRAMMERS

(4) -> devaluate("luanne")$Lisp

(4) luanne

Type: SExpression

Now we get more complicated. We illustrate various ways to store the formula 3x2 + 5 in
different domains. Each domain has a chosen representation.

(5) -> devaluate(3*x^2+5)$Lisp

(5) (1 x (2 0 . 3) (0 0 . 5))

Type: SExpression

The fourth object, 3x2 + 5 is from the domain POLY(INT). It is stored as the list

(1 x (2 0 . 3) (0 0 . 5))

From the domain POLY (Vol 10.3, POLY) we see that

Polynomial(R:Ring): ...

== SparseMultivariatePolynomial(R, Symbol) add ...

So objects from this domain are represented as SMP(INT,SYMBOL). From this domain
we ss that

SparseMultivariatePolynomial(R: Ring,VarSet: OrderedSet): ...

== add

--representations

D := SparseUnivariatePolynomial(%)

So objects from this domain are represented as a SUP(INT)

SparseUnivariatePolynomial(R:Ring): ...

== PolynomialRing(R,NonNegativeInteger) add

So objects from this domain are represented as PR(INT,NNI)

PolynomialRing(R:Ring,E:OrderedAbelianMonoid): ...

FreeModule(R,E) add

--representations

Term:= Record(k:E,c:R)

Rep:= List Term

So objects from this domain are represented as FM(INT,NNI)

FreeModule(R:Ring,S:OrderedSet):

== IndexedDirectProductAbelianGroup(R,S) add

--representations

Term:= Record(k:S,c:R)

Rep:= List Term

So objects from this domain are represented as IDPAG(INT,NNI)

IndexedDirectProductAbelianGroup(A:AbelianGroup,S:OrderedSet):

== IndexedDirectProductAbelianMonoid(A,S) add

So objects from this domain are represented as IDPAM(INT,NNI)

IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedSet):

== IndexedDirectProductObject(A,S) add

--representations

Term:= Record(k:S,c:A)

Rep:= List Term

2.2. MAKEFILE 13

So objects from this domain are represented as IDPO(INT,NNI)

IndexedDirectProductObject(A:SetCategory,S:OrderedSet):

== add

-- representations

Term:= Record(k:S,c:A)

Rep:= List Term

(6) -> devaluate((3*x^2+5)::FRAC(POLY(INT)))$Lisp

(6) ((1 x (2 0 . 3) (0 0 . 5)) 0 . 1)

Type: SExpression

(7) -> devaluate((3*x^2+5)::POLY(FRAC(INT)))$Lisp

(7) (1 x (2 0 3 . 1) (0 0 5 . 1))

Type: SExpression

(8) -> devaluate((3*x^2+5)::EXPR(INT))$Lisp

(8) ((1 [[x,0,%symbol()()()],NIL,1,1024] (2 0 . 3) (0 0 . 5)) 0 . 1)

Type: SExpression

(9) -> devaluate(w)$Lisp

(9)

(((PositiveInteger) . 1) ((Float) 265633114661417543270 . - 65)

((String) . luanne) ((Polynomial (Integer)) 1 x (2 0 . 3) (0 0 . 5))

((Fraction (Polynomial (Integer))) (1 x (2 0 . 3) (0 0 . 5)) 0 . 1)

((Polynomial (Fraction (Integer))) 1 x (2 0 3 . 1) (0 0 5 . 1))

((Expression (Integer))

(1 [[x,0,%symbol()()()],NIL,1,1024] (2 0 . 3) (0 0 . 5)) 0 . 1)

)

Type: SExpression

2.2 Makefile

This book is actually a literate program[Knut92] and can contain executable source code. In
particular, the Makefile for this book is part of the source of the book and is included below.

14 CHAPTER 2. DETAILS FOR PROGRAMMERS

Bibliography

[ADAx83] U.S. Government. The Programming Language Ada Reference Manual. U.S.
Government, 1983.

Comment: STD-1815A-1983

[Ausi79] Giovanni Francesco Mascari Ausiello. On the design of algebraic data structures
with the approach of abstract data types. LNCS, 72:514–530, 1979.

Abstract: The problem of giving a formal definition of the repre-
sentation of algebraic data structures is considered and developped in
the frame work of the abstract data types approach. Such concepts as
canonical form and simplification are formalized and related to prop-
erties of the abstract specification and of the associated term rewriting
system.

[Burs77] R.M. Burstall and J.A. Goguen. Putting theories together to make specifications.
In IJCAI 77 Volume 2, pages 1045–1058, 1977.

[Cohn65] Paul Moritz Cohn. Universal Algebra. Harper and Row, 1965.

[Deme79] A. Demers and J. Donahue. Revised report on russell. technical report TR 79-389,
Cornell, 1979.

[Gris76] Martin L. Griss. The definition and use of data structures in reduce. In SYMSAC
’76, pages 53–59, 1976.

Abstract: This paper gives a brief description and motivation of the
mode analyzing and data-structuring extensions to the algebraic lan-
guage REDUCE. These include generic functions, user defined recursive
data structures, mode transfer functions and user modifiable automatic
coercion. A number of examples are given to illustrate the style and fea-
tures of the language, and how it will aid in the construction of more
efficient and reliable programs.

[Jenk74] Richard D. Jenks. The scratchpad language. ACM SIGPLAN Notices, 9(4):101–
111, 1974.

Abstract: SCRATCHPAD is an interactive system for symbolic
mathematical computation. Its user language, originally intended as
a special-purpose non-procedural language, was designed to capture
the style and succinctness of common mathematical notations, and to
serve as a useful, effective tool for on-line problem solving. This paper
describes extensions to the language which enable it to serve also as
a high-level programming language, both for the formal description of

15

16 BIBLIOGRAPHY

mathematical algorithms and their efficient implementation.

Comment: reprinted in SIGSAM Bulletin, Vol 8, No. 2, pp 20-30 May
1974

[Jenk81] Richard D. Jenks and Barry M. Trager. A language for computational algebra.
In Proc. Symp. on Symbolic and Algebraic Manipulation, SYMSAC 1981, 1981.

Abstract: This paper reports ongoing research at the IBM Research
Center on the development of a language with extensible parameterized
types and generic operators for computational algebra. The language
provides an abstract data type mechanism for defining algorithms which
work in as general a setting as possible. The language is based on the
notions of domains and categories. Domains represent algebraic struc-
tures. Categories designate collections of domains having common op-
erations with stated mathematical properties. Domains and categories
are computed objects which may be dynamically assigned to variables,
passed as arguments, and returned by functions. Although the language
has been carefully tailored for the application of algebraic computation,
it actually provides a very general abstract data type mechanism. Our
notion of a category to group domains with common properties appears
novel among programming languages (cf. image functor of RUSSELL)
and leads to a very powerful notion of abstract algorithms missing from
other work on data types known to the authors.

Comment: IBM Research Report 8930

[Knut92] Donald E. Knuth. Literate Programming. Center for the Study of Language and
Information, Stanford CA, 1992, 0-937073-81-4.

[Leve80] B. Levenworth. Adapt reference manual, 1980.

Comment: IBM Research

[Lisk79] Barbara Liskov, Russ Atkinson, Toby Bloom, Eliot Moss, Craig Schaffert, Bob
Scheifler, and Alan Snyder. Clu reference manual. Technical report, Mas-
sachusetts Institute of Technology, 1979.

[Loos74] Ruediger G. K. Loos. Toward a formal implementation of computer algebra.
SIGSAM, 8(3):9–16, 1974.

Abstract: We consider in this paper the task of synthesizing an alge-
braic system. Today the task is significantly simpler than in the pioneer
days of symbol manipulation, mainly because of the work done by the
pioneers in our area, but also because of the progress in other areas of
Computer Science. There is now a considerable collection of algebraic
algorithms at hand and a much better understanding of data structures
and programming constructs than only a few years ago.

[That82] J.W. Thatcher, E.G. Wagner, and J.B. Wright. Data type specification: Param-
eterization and the power of specification techniques. ACM TOPLAS, 4(4):711–
732, 1982.

Abstract: Our earlier work on abstract data types is extended by the
answers to a number of questions on the power and limitations of alge-
braic specification techniques and by an algebraic treatment of param-
eterized data types like sets-of() and stacks-of-(). The “hidden func-

BIBLIOGRAPHY 17

tion” problem (the need to include operations in specifications which
are wanted hidden from the user) is investigated; the relative power of
conditional specifications and equational specifications is investigated;
the relative power of conditional specifications and equational specifica-
tions is investigated; and it is shown that parameterized specifications
must contain “side conditions” (e.g. that finite-sets-of-d requires an
equality predicate on d).

[Wegb74] Ben Wegbreit. The treatment of data types in el1. Communications of the ACM,
17(5):251–264, 1974.

Abstract: In constructing a general purpose programming language,
a key issue is providing a sufficient set of data types and associated
operations in a manner that permits both natural problem-oriented
notation and efficient implementation. The EL1 language contains a
number of features specifically designed to simultaneously satisfy both
requirements. The resulting treatment of data types includes provision
for programmer-defined data types and generaic routines, programmer
control over type conversion, and very flexible data type behavior, in a
context that allows efficient compiled code and compact data represen-
tation.

[Wulf76] William A. Wulf, Ralph L. London, and Mary Shaw. An introduction to the con-
struction and verification of alphard programs. IEEE Tr. Software Engineering,
SE-2(4):253–265, 1976.

Abstract: The programming language Alphard is designed to provide
support for both the methodologies of “well-structured” programming
and the techniques of formal program verification. Language constructs
allow a programmer to isolate an abstraction, specifying its behavior
publicly while localizing. knowledge about its implementation. The ver-
ification of such an abstraction consists of showing that its implementa-
tion behaves in accordance with its public specifications; the abstraction
can then be used with confidence in constructing other programs, and
the verification of that use employs only the public specifications. This
paper introduces Alphard by developing and verifying a data struc-
ture definition and a program that uses it. It shows how each language
construct contributes to the development of the abstraction and dis-
cusses the way the language design and the verification methodology
wete tailored to each other. It serves not only as an introduction to
Alphard, but also as an example of the symbiosis between verification
and methodology in language design. The strategy of program struc-
turing, illustrated for Alphard, is also applicable to most of the “data
abstraction” mechanisms now appearing.

18 BIBLIOGRAPHY

	A Language for Computational Algebra
	Introduction
	Concepts

	Details for Programmers
	Examining Internals
	Makefile

	Bibliography

