
The 30 Year Horizon

Manuel Bronstein William Burge T imothy Daly
James Davenport Michael Dewar Martin Dunstan
Albrecht Fortenbacher Patrizia Gianni Johannes Grabmeier
Jocelyn Guidry Richard Jenks Larry Lambe
Michael Monagan Scott Morrison William Sit
Jonathan Steinbach Robert Sutor Barry Trager
Stephen Watt Jim Wen Clifton Williamson

Volume 3: Axiom Programmers Guide

i

Portions Copyright (c) 2005 Timothy Daly

The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry

Portions Copyright (c) 2004 Martin Dunstan

Portions Copyright (c) 2007 Alfredo Portes

Portions Copyright (c) 2007 Arthur Ralfs

Portions Copyright (c) 2005 Timothy Daly

Portions Copyright (c) 1991-2002,

The Numerical ALgorithms Group Ltd.

All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or

without modification, are permitted provided that the following

conditions are

met:

- Redistributions of source code must retain the above

copyright notice, this list of conditions and the

following disclaimer.

- Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other

materials provided with the distribution.

- Neither the name of The Numerical ALgorithms Group Ltd.

nor the names of its contributors may be used to endorse

or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

ii

Inclusion of names in the list of credits is based on historical information and is as accurate
as possible. Inclusion of names does not in any way imply an endorsement but represents
historical influence on Axiom development.

Michael Albaugh Cyril Alberga Roy Adler
Christian Aistleitner Richard Anderson George Andrews
S.J. Atkins Henry Baker Martin Baker
Stephen Balzac Yurij Baransky David R. Barton
Thomas Baruchel Gerald Baumgartner Gilbert Baumslag
Michael Becker Nelson H. F. Beebe Jay Belanger
David Bindel Fred Blair Vladimir Bondarenko
Mark Botch Raoul Bourquin Alexandre Bouyer
Karen Braman Peter A. Broadbery Martin Brock
Manuel Bronstein Stephen Buchwald Florian Bundschuh
Luanne Burns William Burge Ralph Byers
Quentin Carpent Robert Caviness Bruce Char
Ondrej Certik Tzu-Yi Chen Cheekai Chin
David V. Chudnovsky Gregory V. Chudnovsky Mark Clements
James Cloos Jia Zhao Cong Josh Cohen
Christophe Conil Don Coppersmith George Corliss
Robert Corless Gary Cornell Meino Cramer
Jeremy Du Croz David Cyganski Nathaniel Daly
Timothy Daly Sr. Timothy Daly Jr. James H. Davenport
David Day James Demmel Didier Deshommes
Michael Dewar Jack Dongarra Jean Della Dora
Gabriel Dos Reis Claire DiCrescendo Sam Dooley
Lionel Ducos Iain Duff Lee Duhem
Martin Dunstan Brian Dupee Dominique Duval
Robert Edwards Heow Eide-Goodman Lars Erickson
Richard Fateman Bertfried Fauser Stuart Feldman
John Fletcher Brian Ford Albrecht Fortenbacher
George Frances Constantine Frangos Timothy Freeman
Korrinn Fu Marc Gaetano Rudiger Gebauer
Van de Geijn Kathy Gerber Patricia Gianni
Gustavo Goertkin Samantha Goldrich Holger Gollan
Teresa Gomez-Diaz Laureano Gonzalez-Vega Stephen Gortler
Johannes Grabmeier Matt Grayson Klaus Ebbe Grue
James Griesmer Vladimir Grinberg Oswald Gschnitzer
Ming Gu Jocelyn Guidry Gaetan Hache
Steve Hague Satoshi Hamaguchi Sven Hammarling
Mike Hansen Richard Hanson Richard Harke
Bill Hart Vilya Harvey Martin Hassner
Arthur S. Hathaway Dan Hatton Waldek Hebisch
Karl Hegbloom Ralf Hemmecke Henderson
Antoine Hersen Roger House Gernot Hueber
Pietro Iglio Alejandro Jakubi Richard Jenks
William Kahan Kyriakos Kalorkoti Kai Kaminski

iii

Grant Keady Wilfrid Kendall Tony Kennedy
Ted Kosan Paul Kosinski Klaus Kusche
Bernhard Kutzler Tim Lahey Larry Lambe
Kaj Laurson George L. Legendre Franz Lehner
Frederic Lehobey Michel Levaud Howard Levy
Ren-Cang Li Rudiger Loos Michael Lucks
Richard Luczak Camm Maguire Francois Maltey
Alasdair McAndrew Bob McElrath Michael McGettrick
Edi Meier Ian Meikle David Mentre
Victor S. Miller Gerard Milmeister Mohammed Mobarak
H. Michael Moeller Michael Monagan Marc Moreno-Maza
Scott Morrison Joel Moses Mark Murray
William Naylor Patrice Naudin C. Andrew Neff
John Nelder Godfrey Nolan Arthur Norman
Jinzhong Niu Michael O’Connor Summat Oemrawsingh
Kostas Oikonomou Humberto Ortiz-Zuazaga Julian A. Padget
Bill Page David Parnas Susan Pelzel
Michel Petitot Didier Pinchon Ayal Pinkus
Frederick H. Pitts Jose Alfredo Portes Gregorio Quintana-Orti
Claude Quitte Arthur C. Ralfs Norman Ramsey
Anatoly Raportirenko Albert D. Rich Michael Richardson
Guilherme Reis Huan Ren Renaud Rioboo
Jean Rivlin Nicolas Robidoux Simon Robinson
Raymond Rogers Michael Rothstein Martin Rubey
Philip Santas Alfred Scheerhorn William Schelter
Gerhard Schneider Martin Schoenert Marshall Schor
Frithjof Schulze Fritz Schwarz Steven Segletes
V. Sima Nick Simicich William Sit
Elena Smirnova Jonathan Steinbach Fabio Stumbo
Christine Sundaresan Robert Sutor Moss E. Sweedler
Eugene Surowitz Max Tegmark T. Doug Telford
James Thatcher Balbir Thomas Mike Thomas
Dylan Thurston Steve Toleque Barry Trager
Themos T. Tsikas Gregory Vanuxem Bernhard Wall
Stephen Watt Jaap Weel Juergen Weiss
M. Weller Mark Wegman James Wen
Thorsten Werther Michael Wester R. Clint Whaley
James T. Wheeler John M. Wiley Berhard Will
Clifton J. Williamson Stephen Wilson Shmuel Winograd
Robert Wisbauer Sandra Wityak Waldemar Wiwianka
Knut Wolf Yanyang Xiao Liu Xiaojun
Clifford Yapp David Yun Vadim Zhytnikov
Richard Zippel Evelyn Zoernack Bruno Zuercher
Dan Zwillinger

iv

Contents

1 Details for Programmers 1
1.1 Examining Internals . 1
1.2 Makefile . 4

2 Bibliography 5

3 Index 9

v

vi CONTENTS

New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))

Chapter 1

Details for Programmers

Axiom maintains internal representations for domains. There are functions for examining
the internals of objects of a particular domain.

1.1 Examining Internals

One useful function is devaluate which takes an object and returns a Lisp pair. The CAR of
the pair is the Axiom type. The CDR of the pair is the object representation. For instances,
consider the session where we create a list of objects using the domain List(Any).

(1) -> w:=[1,7.2,"luanne",3*x^2+5,_

(3*x^2+5)::FRAC(POLY(INT)),_

(3*x^2+5)::POLY(FRAC(INT)),_

(3*x^2+5)::EXPR(INT)]$LIST(ANY)

2 2 2 2

(1) [1,7.2,"luanne",3x + 5,3x + 5,3x + 5,3x + 5]

Type: List(Any)

The first object, 1 is a primitive object that has the domain PI and uses the underlying Lisp
representation for the number.

(2) -> devaluate(1)$Lisp

(2) 1

Type: SExpression

The second object, 7.2 is a primitive object that has the domain FLOAT and uses the
underlying Lisp representation for the number, in this case, itself a pair whose CAR is the
floating point base and whose CDR is the mantissa,

1

2 CHAPTER 1. DETAILS FOR PROGRAMMERS

(3) -> devaluate(7.2)$Lisp

(3) (265633114661417543270 . - 65)

Type: SExpression

The third object, ”luanne” is from the domain STRING and uses the Lisp string repre-
sentation.

(4) -> devaluate("luanne")$Lisp

(4) luanne

Type: SExpression

Now we get more complicated. We illustrate various ways to store the formula 3x2 + 5 in
different domains. Each domain has a chosen representation.

(5) -> devaluate(3*x^2+5)$Lisp

(5) (1 x (2 0 . 3) (0 0 . 5))

Type: SExpression

The fourth object, 3x2 + 5 is from the domain POLY(INT). It is stored as the list

(1 x (2 0 . 3) (0 0 . 5))

From the domain POLY (Vol 10.3, POLY) we see that

Polynomial(R:Ring): ...

== SparseMultivariatePolynomial(R, Symbol) add ...

So objects from this domain are represented as SMP(INT,SYMBOL). From this domain
we ss that

SparseMultivariatePolynomial(R: Ring,VarSet: OrderedSet): ...

== add

--representations

D := SparseUnivariatePolynomial(%)

So objects from this domain are represented as a SUP(INT)

SparseUnivariatePolynomial(R:Ring): ...

== PolynomialRing(R,NonNegativeInteger) add

So objects from this domain are represented as PR(INT,NNI)

PolynomialRing(R:Ring,E:OrderedAbelianMonoid): ...

FreeModule(R,E) add

--representations

Term:= Record(k:E,c:R)

Rep:= List Term

1.1. EXAMINING INTERNALS 3

So objects from this domain are represented as FM(INT,NNI)

FreeModule(R:Ring,S:OrderedSet):

== IndexedDirectProductAbelianGroup(R,S) add

--representations

Term:= Record(k:S,c:R)

Rep:= List Term

So objects from this domain are represented as IDPAG(INT,NNI)

IndexedDirectProductAbelianGroup(A:AbelianGroup,S:OrderedSet):

== IndexedDirectProductAbelianMonoid(A,S) add

So objects from this domain are represented as IDPAM(INT,NNI)

IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedSet):

== IndexedDirectProductObject(A,S) add

--representations

Term:= Record(k:S,c:A)

Rep:= List Term

So objects from this domain are represented as IDPO(INT,NNI)

IndexedDirectProductObject(A:SetCategory,S:OrderedSet):

== add

-- representations

Term:= Record(k:S,c:A)

Rep:= List Term

(6) -> devaluate((3*x^2+5)::FRAC(POLY(INT)))$Lisp

(6) ((1 x (2 0 . 3) (0 0 . 5)) 0 . 1)

Type: SExpression

(7) -> devaluate((3*x^2+5)::POLY(FRAC(INT)))$Lisp

(7) (1 x (2 0 3 . 1) (0 0 5 . 1))

Type: SExpression

(8) -> devaluate((3*x^2+5)::EXPR(INT))$Lisp

(8) ((1 [[x,0,%symbol()()()],NIL,1,1024] (2 0 . 3) (0 0 . 5)) 0 . 1)

Type: SExpression

(9) -> devaluate(w)$Lisp

(9)

(((PositiveInteger) . 1) ((Float) 265633114661417543270 . - 65)

4 CHAPTER 1. DETAILS FOR PROGRAMMERS

((String) . luanne) ((Polynomial (Integer)) 1 x (2 0 . 3) (0 0 . 5))

((Fraction (Polynomial (Integer))) (1 x (2 0 . 3) (0 0 . 5)) 0 . 1)

((Polynomial (Fraction (Integer))) 1 x (2 0 3 . 1) (0 0 5 . 1))

((Expression (Integer))

(1 [[x,0,%symbol()()()],NIL,1,1024] (2 0 . 3) (0 0 . 5)) 0 . 1)

)

Type: SExpression

1.2 Makefile

This book is actually a literate program[Knut92] and can contain executable source code. In
particular, the Makefile for this book is part of the source of the book and is included below.

Chapter 2

Bibliography

5

6 CHAPTER 2. BIBLIOGRAPHY

Bibliography

[Knut92] Donald E. Knuth. Literate Programming. Center for the Study of Language and
Information, Stanford CA, 1992.

7

8 BIBLIOGRAPHY

Chapter 3

Index

9

	Details for Programmers
	Examining Internals
	Makefile

	Bibliography
	Index

