

Manuel Bronstein
James Davenport
Albrecht Fortenbacher
Jocelyn Guidry
Michael Monagan
Jonathan Steinbach
Stephen Watt

William Burge Timothy Daly
Michael Dewar Martin Dunstan
Patrizia Gianni Johannes Grabmeier
Richard Jenks Larry Lambe
Scott Morrison William Sit
Robert Sutor Barry Trager
Jim Wen Clifton Williamson

Volume Bibliography: Axiom Literature Citations

```
Portions Copyright (c) 2005 Timothy Daly
The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry
Portions Copyright (c) 2004 Martin Dunstan
Portions Copyright (c) 2007 Alfredo Portes
Portions Copyright (c) 2007 Arthur Ralfs
Portions Copyright (c) 2005 Timothy Daly
Portions Copyright (c) 1991-2002,
The Numerical ALgorithms Group Ltd.
All rights reserved
This book and the Axiom software is licensed as follows:
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of The Numerical ALgorithms Group Ltd. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
```

Inclusion of names in the list of credits is based on historical information and is as accurate as possible. Inclusion of names does not in any way imply an endorsement but represents historical influence on Axiom development.

Michael Albaugh	Cyril Alberga	Roy Adler
Christian Aistleitner	Richard Anderson	George Andrews
S.J. Atkins	Henry Baker	Martin Baker
Stephen Balzac	Yurij Baransky	David R. Barton
Thomas Baruchel	Gerald Baumgartner	Gilbert Baumslag
Michael Becker	Nelson H. F. Beebe	Jay Belanger
David Bindel	Fred Blair	Vladimir Bondarenko
Mark Botch	Raoul Bourquin	Alexandre Bouyer
Karen Braman	Peter A. Broadbery	Martin Brock
Manuel Bronstein	Stephen Buchwald	Florian Bundschuh
Luanne Burns	William Burge	Ralph Byers
Quentin Carpent	Robert Caviness	Bruce Char
Ondrej Certik	Tzu-Yi Chen	Cheekai Chin
David V. Chudnovsky	Gregory V. Chudnovsky	Mark Clements
James Cloos	Jia Zhao Cong	Josh Cohen
Christophe Conil	Don Coppersmith	George Corliss
Robert Corless	Gary Cornell	Meino Cramer
Jeremy Du Croz	David Cyganski	Nathaniel Daly
Timothy Daly Sr.	Timothy Daly Jr.	James H. Davenport
David Day	James Demmel	Didier Deshommes
Michael Dewar	Jack Dongarra	Jean Della Dora
Gabriel Dos Reis	Claire DiCrescendo	Sam Dooley
Lionel Ducos	Iain Duff	Lee Duhem
Martin Dunstan	Brian Dupee	Dominique Duval
Robert Edwards	Heow Eide-Goodman	Lars Erickson
Richard Fateman	Bertfried Fauser	Stuart Feldman
John Fletcher	Brian Ford	Albrecht Fortenbacher
George Frances	Constantine Frangos	Timothy Freeman
Korrinn Fu	Marc Gaetano	Rudiger Gebauer
Van de Geijn	Kathy Gerber	Patricia Gianni
Gustavo Goertkin	Samantha Goldrich	Holger Gollan
Teresa Gomez-Diaz	Laureano Gonzalez-Vega	Stephen Gortler
Johannes Grabmeier	Matt Grayson	Klaus Ebbe Grue
James Griesmer	Vladimir Grinberg	Oswald Gschnitzer
Ming Gu	Jocelyn Guidry	Gaetan Hache
Steve Hague	Satoshi Hamaguchi	Sven Hammarling
Mike Hansen	Richard Hanson	Richard Harke
Bill Hart	Vilya Harvey	Martin Hassner
Arthur S. Hathaway	Dan Hatton	Waldek Hebisch
Karl Hegbloom	Ralf Hemmecke	Henderson
Antoine Hersen	Roger House	Gernot Hueber
Pietro Iglio	Alejandro Jakubi	Richard Jenks
William Kahan	Kyriakos Kalorkoti	Kai Kaminski

Grant Keady	Wilfrid Kendall	Tony Kennedy
Ted Kosan	Paul Kosinski	Klaus Kusche
Bernhard Kutzler	Tim Lahey	Larry Lambe
Kaj Laurson	George L. Legendre	Franz Lehner
Frederic Lehobey	Michel Levaud	Howard Levy
Ren-Cang Li	Rudiger Loos	Michael Lucks
Richard Luczak	Camm Maguire	Francois Maltey
Alasdair McAndrew	Bob McElrath	Michael McGettrick
Edi Meier	Ian Meikle	David Mentre
Victor S. Miller	Gerard Milmeister	Mohammed Mobarak
H. Michael Moeller	Michael Monagan	Marc Moreno-Maza
Scott Morrison	Joel Moses	Mark Murray
William Naylor	Patrice Naudin	C. Andrew Neff
John Nelder	Godfrey Nolan	Arthur Norman
Jinzhong Niu	Michael O'Connor	Summat Oemrawsingh
Kostas Oikonomou	Humberto Ortiz-Zuazaga	Julian A. Padget
Bill Page	David Parnas	Susan Pelzel
Michel Petitot	Didier Pinchon	Ayal Pinkus
Frederick H. Pitts	Jose Alfredo Portes	Gregorio Quintana-Orti
Claude Quitte	Arthur C. Ralfs	Norman Ramsey
Anatoly Raportirenko	Albert D. Rich	Michael Richardson
Guilherme Reis	Huan Ren	Renaud Rioboo
Jean Rivlin	Nicolas Robidoux	Simon Robinson
Raymond Rogers	Michael Rothstein	Martin Rubey
Philip Santas	Alfred Scheerhorn	William Schelter
Gerhard Schneider	Martin Schoenert	Marshall Schor
Frithjof Schulze	Fritz Schwarz	Steven Segletes
V. Sima	Nick Simicich	William Sit
Elena Smirnova	Jonathan Steinbach	Fabio Stumbo
Christine Sundaresan	Robert Sutor	Moss E. Sweedler
Eugene Surowitz	Max Tegmark	T. Doug Telford
James Thatcher	Balbir Thomas	Mike Thomas
Dylan Thurston	Steve Toleque	Barry Trager
Themos T. Tsikas	Gregory Vanuxem	Bernhard Wall
Stephen Watt	Jaap Weel	Juergen Weiss
M. Weller	Mark Wegman	James Wen
Thorsten Werther	Michael Wester	R. Clint Whaley
James T. Wheeler	John M. Wiley	Berhard Will
Clifton J. Williamson	Stephen Wilson	Shmuel Winograd
Robert Wisbauer	Sandra Wityak	Waldemar Wiwianka
Knut Wolf	Yanyang Xiao	Liu Xiaojun
Clifford Yapp	David Yun	Vadim Zhytnikov
Richard Zippel	Evelyn Zoernack	Bruno Zuercher
Dan Zwillinger		

Contents

1 The Axiom Bibliography 1
2 The Bibliography 3
2.1 Algebra Documentation References 3
2.2 Linear Algebra 5
2.3 Algebraic Algorithms 19
2.4 Sparse Linear Systems 22
2.5 Matrix Determinants 22
2.6 Open Problems 23
2.7 Parallel Evaluation 24
2.8 Hybrid Symbolic/Numeric 25
2.9 Software Systems 33
2.10 The Seven Dwarfs 36
2.11 Solving Systems of Equations 36
2.12 Numerical Algorithms 37
2.13 Special Functions 39
2.14 Exponential Integral $E_{1}(x)$ 40
2.15 Polynomial GCD 42
2.16 Category Theory 46
2.17 Proving Axiom Correct 47
2.18 Interval Arithmetic 63
2.19 Numerics 65
2.20 Advanced Documentation 66
2.21 Differential Equations 69
2.22 Expression Simplification 78
2.23 Integration 78
2.24 Partial Fraction Decomposition 109
2.25 Ore Rings 111
2.26 Number Theory 112
2.27 Sparse Polynomial Interpolation 113
2.28 Divisions and Algebraic Complexity 117
2.29 Polynomial Factorization 119
2.30 Branch Cuts 128
2.31 Square-free Decomposition 136
2.32 Symbolic Summation 140
2.33 Differential Forms 154
2.34 To Be Classified 158
2.35 Axiom Citations in the Literature 173
A 173
B 175
C 188
D 192
E 206
F 206
G 210
H 218
J 219
K 225
L 227
M 233
N 237
O 239
P 239
R 241
S 243
T 252
V 253
W 255
Y 264
Z 264
2.36 Axiom Citations of External Sources 265
A 265
B 269
C 277
D 282
F 289
G 293
H 301
I 305
J 306
K 308
L 310
M 316
N 321
O 322
P 323
Q 330
R 330
S 335
T 340
CONTENTS vii
U 341
V 342
W 342
Y 348
Z 348
3 Bibliography 355
4 Index 359

New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commercial product. On September 3, 2002 Axiom was released under the Modified BSD license, including this document. On August 27, 2003 Axiom was released as free and open source software available for download from the Free Software Foundation's website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr. Gilbert Baumslag for his support of the long term goal.
The online version of this documentation is roughly 1000 pages. In order to make printed versions we've broken it up into three volumes. The first volume is tutorial in nature. The second volume is for programmers. The third volume is reference material. We've also added a fourth volume for developers. All of these changes represent an experiment in print-ondemand delivery of documentation. Time will tell whether the experiment succeeded.
Axiom has been in existence for over thirty years. It is estimated to contain about three hundred man-years of research and has, as of September 3, 2003, 143 people listed in the credits. All of these people have contributed directly or indirectly to making Axiom available. Axiom is being passed to the next generation. I'm looking forward to future milestones.

With that in mind I've introduced the theme of the "30 year horizon". We must invent the tools that support the Computational Mathematician working 30 years from now. How will research be done when every bit of mathematical knowledge is online and instantly available? What happens when we scale Axiom by a factor of 100 , giving us 1.1 million domains? How can we integrate theory with code? How will we integrate theorems and proofs of the mathematics with space-time complexity proofs and running code? What visualization tools are needed? How do we support the conceptual structures and semantics of mathematics in effective ways? How do we support results from the sciences? How do we teach the next generation to be effective Computational Mathematicians?

The "30 year horizon" is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))

Chapter 1

The Axiom Bibliography

This bibliography covers areas of computational mathematics. Papers which mention Axiom have a "keyword=" entry of "axiomref". Papers we have on site have a "paper=" entry.

The authors are listed in the index. The topic keywords are listed in the index. Algorithms are mentioned in the index.
The TO index entry tries to say that the first named algorithm or author has been updated or improved by the second named algorithm or author.
Introduction of special terms (e.g. Toeplitz matrix) may include a paragraph for those unfamiliar with the terms.

Chapter 2

The Bibliography

2.1 Algebra Documentation References

— axiom.bib -

```
@article{Sims71,
    author = "Sims, Charles",
    title = "Determining the Conjugacy Classes of a Permutation Group",
    journal = "Computers in Algebra and Number Theory, SIAM-AMS Proc.",
    volume = "4",
    publisher = "American Math. Soc.",
    year = "1991",
    pages = "191--195",
    comment = "documentation for PermutationGroup"
}
```

- axiom.bib -

```
@article{Worz80,
    author = {W\"orz-Busekros, A.},
    title = "Algebra in Genetics",
    publisher = "Springer-Verlag",
    journal = "Lecture Notes in Biomathematics",
    volume = "36",
    year = "1980",
    comment = "documentation for AlgebraGivenByStructuralConstants"
}
```


- axiom.bib -

```
@article{Reed97,
    author = "Reed, Mary Lynn",
    title = "Algebraic Structure of Genetic Inheritance",
    journal = "Bulletin of the American Mathematical Society",
    year = "1997",
    volume = "34",
    number = "2",
    month = "April",
    pages = "107--130",
    paper = "Reed97.pdf",
    comment = "documentation for AlgebraGivenByStructuralConstants",
    url="http://www.ams.org/bull/1997-34-02/S0273-0979-97-00712-X/S0273-0979-97-00712-X.pdf",
    abstract =
        "In this paper we will explore the nonassociative algebraic structure
        that naturally ocurs as genetic informatin gets passed down through
        the generations. While modern understanding of genetic inheritance
        initiated with the theories of Charles Darwin, it was the Augustinian
        monk Gregor Mendel who began to uncover the mathematical nature of the
        subject. In fact, the symbolism Mendel used to describe his first
        results (e.g. see his }1866\mathrm{ paper {\sl Experiments in
        Plant-Hybridization} is quite algebraically suggestive. Seventy four
        years later, I.M.H. Etherington introduced the formal language of
        abstract algebra to the study of genetics in his series of seminal
        papers. In this paper we will discuss the concepts of genetics that
        suggest the underlying algebraic structure of inheritance, and we will
        give a brief overview of the algebras which arise in genetics and some
        of their basi properties and relationships. With the popularity of
        biologically motivated mathematics continuing to rise, we offer this
        survey article as another example of the breadth of mathematics that
        has biological significance. The most comprehensive reference for the
        mathematical research done in this area (through 1980) is
        W\:orz-Busekros."
}
```

 - axiom.bib -
 @article\{Gons71,
author $=$ "Gonshor, H.",
title $=$ "Contributions to Genetic Algebras",

```
    journal = "Proc. Edinburgh Mathmatical Society (Series 2)",
    volume = "17",
    number = "4",
    month = "December",
    year = "1971",
    issn = "1464-3839",
    pages = "289--298",
    doi = "10.1017/S0013091500009548",
    url = "http://journals.cambridge.org/article_S0013091500009548",
    comment = "documentation for AlgebraGivenByStructuralConstants",
    abstract =
    "Etherington introduced certain algebraic methods into the study of
    population genetics. It was noted that algebras arising in genetic
    systems tend to have certain abstract properties and that these can be
    used to give elegant proofs of some classical stability theorems in
    population genetics."
}
```


2.2 Linear Algebra

— axiom.bib -

```
@Unpublished{Kalt01,
    author = "Kaltofen, E.",
    title = "Algorithms for sparse and black box matrices
            over finite fields (Invited talk)",
    year = "2001",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/01/Ka01_Fq6.pdf",
    paper = "Kalt01.pdf",
    keywords = "survey",
    abstract = "
            Sparse and structured matrices over finite fields occur in many
            settings. Sparse linear systems arise in sieve-based integer factoring
            and discrete logarithm algorithms. Structured matrices arise in
            polynomial factoring algorithms; one example is the famous Q-matrix
            from Berlekamp's method. Sparse diophantine linear problems, like
            computing the Smith canonical form of an integer matrix or computing
            an integer solution to a sparse linear system, are reduced via p-adic
            lifting to sparse matrix analysis over a finite field.
            In the past 10 years there has been substantial activity on the
            improvement of a solution proposed by Wiedemann in 1986. The main new
            ingredients are faster pre-conditioners, projections by an entire
            block of random vectors, Lanczos recurrences, and a connection to
```

```
    Kalman realizations of control theory. My talk surveys these
    developments and describe some major unresolved problems."
}
```

- axiom.bib -
@Article\{Chen02,
author $=$ "Chen, L. and Eberly, W. and Kaltofen, E.
and Saunders, B. D. and Turner, W. J. and Villard, G.",
title = "Efficient Matrix Preconditioners for Black Box Linear Algebra",
journal = "Linear Algebra and Applications",
year = "2002",
volume = "343--344",
pages = "119--146",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/02/CEKSTV02.pdf",
paper = "Chen02.pdf",
abstract = "
The main idea of the ''black box'' approach in exact linear algebra is
to reduce matrix problems to the computation of minimum polynomials.
In most cases preconditioning is necessary to obtain the desired
result. Here good preconditioners will be used to ensure geometrical
/ algebraic properties on matrices, rather than numerical ones, so we
do not address a condition number. We offer a review of problems for
which (algebraic) preconditioning is used, provide a bestiary of
preconditioning problems, and discuss several preconditioner types to
solve these problems. We present new conditioners, including
conditioners to preserve low displacement rank for Toeplitz-like
matrices. We also provide new analyses of preconditioner performance
and results on the relations among preconditioning problems and with
linear algebra problems. Thus, improvements are offered for the
efficiency and applicability of preconditioners. The focus is on
linear algebra problems over finite fields, but most results are valid
for entries from arbitrary fields."
\}
 - axiom.bib -
@InCollection\{Kalt11d,
author = "Kaltofen, Erich and Storjohann, Arne",

```
    title = "The Complexity of Computational Problems in Exact Linear Algebra",
    booktitle = "Encyclopedia of Applied and Computational Mathematics",
    crossref = "EACM",
    year = "2011",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/11/KS11.pdf",
    paper = "Kalt11d.pdf",
    abstract = "
    Computational problems in exact linear algebra including computing an
    exact solution of a system of linear equations with exact scalars,
    which can be exact rational numbers, integers modulo a prime number,
    or algebraic extensions of those represented by their residues modulo
    a minimum polynomial. Classical linear algebra problems are computing
    for a matrix its rank, determinant, characteristic and minimal
    polynomial, and rational canonical form (= Frobenius normal form). For
    matrices with integer and polynomial entries one computes the Hermite
    and Smith normal forms. If a rational matrix is symmetric, one
    determines if the matrix is definite."
}
```

— axiom.bib -

```
@Article{Come12,
    author = "Comer, Matthew T. and Kaltofen, Erich L.",
    title = "On the {Berlekamp}/{Massey} Algorithm and Counting Singular {Hankel}
                Matrices over a Finite Field",
    year = "2012",
    month = "April",
    journal = "Journal of Symbolic Computation",
    volume = "47",
    number = "4",
    pages = "480--491",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/10/CoKa10.pdf",
    paper = "Come12.pdf",
    abstract = "
        We derive an explicit count for the number of singular $n\times n$
        Hankel (Toeplitz) matrices whose entries range over a finite field
        with $q$ elements by observing the execution of the Berlekamp / Massey
        algorithm on its elements. Our method yields explicit counts also when
        some entries above or on the anti-diagonal (diagonal) are fixed. For
        example, the number of singular $n\times n$ Toeplitz matrices with 0's
        on the diagonal is $q^{2n-3}+q^{n-1}-q^{n-2}$.
            We also derive the count for all $n\times n$ Hankel matrices of rank
        $r$ with generic rank profile, I.e., whose first $r$ leading principal
        submatrices are non-singular and the rest are singular, namely
```

```
    $q^r(q-1)^r$ in the case $r < n$ and $q^{r-1}(q-1)^r$ in the case
    $r=n$. This result generalizes to block-Hankel matrices as well."
}
```

- axiom.bib -

```
@Article{Kalt13a,
    author = "Kaltofen, Erich and Yuhasz, George",
    title = "A Fraction Free Matrix {Berlekamp}/{Massey} Algorithm",
    journal = "Linear Algebra and Applications",
    year = "2013",
    volume = "439",
    number = "9",
    month = "November",
    pages = "2515--2526",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/08/KaYu08.pdf",
    paper = "Kalt13a.pdf",
    abstract = "
        We describe a fraction free version of the Matrix Berlekamp / Massey
        algorithm. The algorithm computes a minimal matrix generator of
        linearly generated square matrix sequences over an integral
        domain. The algorithm performs all operations in the integral domain,
        so all divisions performed are exact. For scalar sequences, the matrix
        algorithm specializes to a more efficient algorithm than the algorithm
        currently in the literature. The proof of integrality of the matrix
        algorithm gives a new proof of integrality for the scalar
        specialization."
}
```

- axiom.bib -

```
@Article{Kalt13,
    author = "Kaltofen, Erich and Yuhasz, George",
    title = "On The Matrix {Berlekamp}-{Massey} Algorithm",
    year = "2013",
    volume = "9",
    number = "4",
    month = "September",
    journal = "ACM Trans. Algorithms",
```

```
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/06/KaYu06.pdf",
    paper = "Kalt13.pdf",
    abstract = "
    We analyze the Matrix Berlekamp / Massey algorithm, which generalizes
    the Berlekamp / Massey algorithm [Massey 1969] for computing linear
    generators of scalar sequences. The Matrix Berlekamp / Massey
    algorithm computes a minimal matrix generator of a linearly generated
    matrix sequence and has been first introduced by Rissanen [1972a],
    Dickinson et al. [1974], and Coppersmith [1994]. Our version of the
    algorithm makes no restrictions on the rank and dimensions of the
    matrix sequence. We also give new proofs of correctness and complexity
    for the algorithm, which is based on self-contained loop invariants
    and includes an explicit termination criterion for a given
    determinantal degree bound of the minimal matrix generator"
}
```

- axiom.bib -
@InProceedings\{Kalt02a,
author = "Kaltofen, Erich",
title = "An output-sensitive variant of the baby steps/\allowbreak
giant steps determinant algorithm",
booktitle = "Proc. 2002 Internat. Symp. Symbolic Algebraic Comput.",
crossref = "ISSAC02"
pages = "138--144",
year = "2002",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/02/Ka02.pdf",
paper = "Kalt02a.pdf",
\}
— axiom.bib -
@InProceedings\{Kalt01a,
author = "Kaltofen, E. and Villard, G.",
title = "On the complexity of computing determinants",
booktitle $=$ "Proc. Fifth Asian Symposium on Computer Mathematics
(ASCM 2001)",
crossref = "ASCMO1",
pages = "13--27",
isbn = "981-02-4763-X",
year $=$ "2001" ,

```
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/01/KaVi01.pdf",
    paper = "Kalt01a.pdf",
    abstract = "
    The computation of the determinant of an $n\times n$ matrix $A$ of
    numbers or polynomials is a challenge for both numerical and symbolic
    methods. Numerical methods, such as Clarkson's algorithm [10,7] for
    the sign of the determinant must deal with conditionedness that
    determines the number of mantissa bits necessary for obtaining a
    correct sign. Symbolic algorithms that are based on Chinese
    remaindering [6,17,Chapter 5.5] must deal with the fact that the
    length of the determinant in the worse case grows linearly in the
    dimension of the matrix. Hence the number of modular operations is $n$
    times the number of arithmetic operations in a given algorithm.
    Hensel lifting combined with rational number recovery [14,1] has cubic
    bit complexity in $n$, but the algorithm can only determine a factor
    of the determinant, namely the largest invariant factor. If the matrix
    is similar to a multiple of the identity matrix, the running time is
    again that of Chinese remaindering."
}
```


- axiom.bib -

```
@Article{Kalt04a,
    author = "Kaltofen, Erich and Villard, Gilles",
    title = "On the Complexity of Computing Determinants",
    journal = "Computational Complexity",
    volume = "13",
    number = "3-4",
    year = "2004",
    pages = "91--130",
    url =
        "http://www.math.ncsu.edu/~kaltofen/bibliography/04/KaVi04_2697263.pdf",
        paper = "Kalt04a.pdf",
    abstract = "
        We present new baby steps / giant steps algorithms of asymptotically
        fast running time for dense matrix problems. Our algorithms compute
        the determinant, characteristic polynomial, Frobenius normal form and
        Smith normal form of a dense $n\times n$ matrix $A$ with integer
        entries in $(x^{3.2} log ||A||)^{1+o(1)}$ and
        $(x^{2.697263} log ||A||)^{1+o(1)}$
        bit operations; here $|A||$ denotes the largest
        entry in absolute value and the exponent adjustment by ''$+o(1)$")
        captures additional factors $C_1 (log n)^{C_2}(loglog ||A|)^{C_3}$
        for positive real constants $C_1$, $C_2$, $C_3$. The bit complexity
        $(n^{3.2} log ||A|)^{1+o(1)}$ results from using the classical cubic
```

```
    matrix multiplication algorithm. Our algorithms are randomized, and
    we can certify that the output is the determinant of $A$ in a Las
    Vegas fashion. The second category of problems deals with the setting
    where the matrix $A$ has elements from an abstract commutative ring,
    that is, when no divisions in the domain of entries are possible. We
    present algorithms that deterministically compute the determinant,
    characteristic polynomial and adjoint of $A$ with $n^{3.2+o(1)}$ and
    $O(n^{2.697263})$ ring additions, substractions, and multiplications."
}
```

— axiom.bib -
@InProceedings\{Kalt97b, author = "Eberly, W. and Kaltofen, E.", title = "On Randomized \{Lanczos\} Algorithms", booktitle = "Proc. 1997 Internat. Symp. Symbolic Algebraic Comput.", year = "1997", crossref = "ISSAC97", pages = "176--183", url = "http://www.math.ncsu.edu/~kaltofen/bibliography/97/EbKa97.pdf", paper = "Kalt97b.pdf",
abstract = "
Las Vegas algorithms that are based on Lanczo's method for solving
symmetric linear systems are presented and analyzed. These are
compared to a similar randomized Lanczos algorithm that has been used
for integer factorization, and to the (provably reliable) algorithm of
Wiedemann. The analysis suggests that our Lanczos algorithms are
preferable to several versions of Wiedemann's method for computations
over large fields, expecially for certain symmetric matrix
computations."
\}

The Sylvester matrix is used to compute the resultant of two polynomials. The Sylvester matrix is formed from the coefficients of the two polynomials. Given a polynomial with degree m and another of degree n form an $(m+n) \times(m+n)$ matrix by filling the matrix from the upper left corner with the coefficients of the first polynomial then shifting down one row and one column to the right and filling in the coefficients starting there until they hit the right column. Starting at the next row, do the same process for the second polynomial. The determinant of this matrix is the resultant of the two polynomials.
For example, given $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ and $b_{2} x^{2}+b_{1} x+b_{0}$ the Sylvester matrix is a
$(3+2) \times(3+2)$ matrix:

$$
\left[\begin{array}{ccccc}
a_{3} & a_{2} & a_{1} & a_{0} & 0 \\
0 & a_{3} & a_{2} & a_{1} & a_{0} \\
b_{2} & b_{1} & b_{0} & 0 & 0 \\
0 & b_{2} & b_{1} & b_{0} & 0 \\
0 & 0 & b_{2} & b_{1} & b_{0}
\end{array}\right]
$$

The resultant of these two polynomials (assuming a leading coefficient of 1), is the product of the differences $p_{i}-q_{i}$ between the roots of the polynomials. If there are roots in common then the product will contain a 0 and the whole equation reduces to 0 . This can be used to determine if two polynomials have common roots.
For example, given a polynomial in x with distinct roots a_{1} and a_{2} it can be factored as $t 1:=\left(x-a_{1}\right)\left(x-a_{2}\right)$.

Given a second polynomial in x with distinct roots b_{1}, b_{2}, and b_{3} it can be factored as $t 2:=\left(x-b_{1}\right)\left(x-b_{2}\right)\left(x-b_{3}\right)$.
The Axiom call of $\operatorname{resultant}(t 1, t 2, x)$ is

$$
\left(b_{1}-a_{2}\right)\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)\left(b_{2}-a_{1}\right)\left(b_{3}-a_{2}\right)\left(b_{3}-a_{1}\right)
$$

In symbolic form the resultant can show the multiplicity of roots when shown in factored form.

```
            - axiom.bib -
@InProceedings{Kalt94c,
    author = "Kaltofen, E.",
    title = "Asymptotically fast solution of {Toeplitz}-like singular
                linear systems",
    booktitle = "Proc. 1994 Internat. Symp. Symbolic Algebraic Comput.",
    pages = "297--304",
    crossref = "ISSAC94",
    year = "1994",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/94/Ka94_issac.pdf",
    paper = "Kalt94c.pdf",
    abstract = "
        The Toeplitz-likeness of a matrix (Kailath et al. 1979) is the
        generalization of the notion that a matrix is Toeplitz. Block matrices
        with Toeplitz blocks, such as the Sylvester matrix corresponding to
        the resultant of two univariate polynomials, are Toeplitz-like, as are
        products and inverses of Toeplitz-like matrices. The displacement rank
        of a matrix is a measure for the degree of being Toeplitz-like. For
        example, an $r\times s$ block matrix with Toeplitz blocks has
        displacement rank $r+s$ whereas a generic $N\ximtes N$ matrix has
        displacement rank $N$. A matrix of displacement rank $\alpha$ can be
        implicitly represented by a sum of $\alpha$ matrices, each of which is
        the product of a lower trainagular and an upper triangular Toeplitz
        matrices. Such a $\sigmaLU$ representation can usually be obtained
```

```
    efficiently."
```

\}
— axiom.bib -

```
@Article{Kalt99,
    author = "Kaltofen, E. and Lobo, A.",
    title = "Distributed matrix-free solution of large sparse linear systems over
            finite fields",
    journal = "Algorithmica",
    year = "1999",
    pages = "331--348",
    month = "July--Aug.",
    volume = "24",
    number = "3--4",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/99/KaLo99.pdf",
    paper = "Kalt99.pdf",
    abstract = "
        We describe a coarse-grain parallel approach for the homogeneous
        solution of linear systems. Our solutions are symbolic, i.e., exact
        rather than numerical approximations. We have performed an outer loop
        parallelization that works well in conjunction with a black box
        abstraction for the coefficient matrix. Our implementation can be run
        on a network cluster of UNIX workstations as well as on an SP-2
        multiprocessor. Task distribution and management are effected through
        MPI and other packages. Fault tolerance, checkpointing, and recovery
        are incorporated. Detailed timings are presented for experiments with
        systems that arise in RSA challenge integer factoring efforts. For
        example, we can solve a 252,222$\times$252,222 system with about 11.04
        million nonzero entries over the Galois field with two elements using
        four processors of an SP-2 multiprocessor, in about 26.5 hours CPU time."
}
```

- axiom.bib -
@InProceedings\{Kalt96a, author $=$ "Kaltofen, E. and Lobo, A.", title = "Distributed matrix-free solution of large sparse linear systems over finite fields",

```
    booktitle = "Proc. High Performance Computing '96",
    year = "1996",
    editor = "A. M. Tentner",
    pages = "244--247",
    organization = "Society for Computer Simulation",
    publisher = "Simulation Councils, Inc.",
    address = "San Diego, CA",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/96/KaLo96_hpc.pdf",
    paper = "Kalt96a.pdf",
    abstract = "
    We describe a coarse-grain parallel software system for the
    homogeneous solution of linear systems. Our solutions are symbolic,
    i.e., exact rather than numerical approximations. Our implementation
    can be run on a network cluster of SPARC-20 computers and on an SP-2
    multiprocessor. Detailed timings are presented for experiments with
    systems that arise in RSA challenge integer factoring efforts. For
    example, we can solve a 252,222$\times$252,222 system with about 11.04
    million non-zero entries over the Galois field with 2 elements using 4
    processors of an SP-2 multiprocessor, in about 26.5 hours CPU time."
}
```

 - axiom.bib -
 @InProceedings\{Kalt94a,
author = "Kaltofen, E. and Lobo, A.",
title = "Factoring high-degree polynomials by the black box
Berlekamp algorithm",
booktitle = "Proc. 1994 Internat. Symp. Symbolic Algebraic Comput.",
crossref = "ISSAC94",
pages = "90--98",
year = "1994",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/94/KaLo94.ps.gz",
paper = "Kalt94a.ps",
abstract = "
Modern techniques for solving structured linear systems over finite
fields, which use the coefficient matrix as a black box and require an
efficient algorithm for multiplying this matrix by a vector, are
applicable to the classical algorithm for factoring a univariate
polynomial over a finite field by Berlekamp (1967 and 1970). We report
aon a computer implementation of this idea that is based on the
parallel block Wiedemann linear system solver (Coppersmith 1994 and
Kaltofen 1993 and 1995). The program uses randomization and we also
study the expected run time behavior of our method."
\}

- axiom.bib -

```
@Article{Kalt95,
    author = "Kaltofen, E.",
    title = "Analysis of {Coppersmith}'s block {Wiedemann} algorithm for the
                parallel solution of sparse linear systems",
    journal = "Math. Comput.",
    year = "1995",
    volume = "64",
    number = "210",
    pages = "777--806",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/95/Ka95_mathcomp.pdf",
    paper = "Kalt95.pdf",
    abstract = "
        By using projections by a block of vectors in place of a single vector
        it is possible to parallelize the outer loop of iterative methods for
        solving sparse linear systems. We analyze such a scheme proposed by
        Coppersmith for Wiedemann's coordinate recurrence algorithm, which is
        based in part on the Krylov subspace approach. We prove that by use of
        certain randomizations on the input system the parallel speed up is
        roughly by the number of vectors in the blocks when using as many
        processors. Our analysis is valid for fields of entries that have
        sufficiently large cardinality. Our analysis also deals with an
        arising subproblem of solving a singular block Toeplitz system by use
        of the theory of Toeplitz-like matrices."
}
```

— axiom.bib -
@Article\{Kalt90a,
author = "Kaltofen, E. and Krishnamoorthy, M.S. and Saunders, B.D.",
title = "Parallel algorithms for matrix normal forms",
journal = "Linear Algebra and Applications",
year = "1990",
volume = "136",
pages = "189--208",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/90/KKS90.pdf",
paper $=$ "Kalt90a.pdf",
abstract = "
Here we offer a new randomized parallel algorithm that determines the
Smith normal form of a matrix with entries being univariate
polynomials with coefficients in an arbitrary field. The algorithm has two important advantages over our previous one: the multipliers related the Smith form to the input matrix are computed, and the algorithm is probabilistic of Las Vegas type, i.e., always finds the correct answer. The Smith form algorithm is also a good sequential algorithm. Our algorithm reduces the problem of Smith form computations to two Hermite form computations. Thus the Smith form problem has complexity asymptotically that of the Hermite form problem. We also construct fast parallel algorithms for Jordan normal form and testing similarity of matrices. Both the similarity and non-similarity problems are in the complexity class RNC for the usual coefficient fields, i.e., they can be probabilistically decided in poly-logarithmic time using polynomially many processors."
\qquad
@Article\{Kalt87,
author = "Kaltofen, E. and Krishnamoorthy, M.S. and Saunders, B.D.",
title $=$ "Fast parallel computation of Hermite and Smith forms of polynomial matrices",
journal = "SIAM J. Alg. Discrete Math.",
year = "1987",
volume = "8",
pages = "683--690",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/87/KKS87.pdf", paper = "Kalt87.pdf",
abstract = "
Boolean circuits of polynomial size and poly-logarithmic depth are given for computing the Hermite and Smith normal forms of polynomial matrices over finite fields and the field of rational numbers. The circuits for the Smith normal form computation are probabilistic ones and also determine very efficient sequential algorithms. Furthermore, we give a polynomial-time deterministic sequential algorithm for the Smith normal form over the rationals. The Smith normal form algorithms are applied to the Rational canonical form of matrices over finite fields and the field of rational numbers."
\}

- axiom.bib -

```
@InProceedings{Kalt92,
    author = "Kaltofen, E. and Pan, V.",
    title = "Processor-efficient parallel solution of linear systems {II}:
            the positive characteristic and singular cases",
    booktitle = "Proc. 33rd Annual Symp. Foundations of Comp. Sci.",
    year = "1992",
    pages = "714--723",
    publisher = "IEEE Computer Society Press",
    address = "Los Alamitos, California",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/92/KaPa92.pdf",
    paper = "Kalt92.pdf",
    abstract = "
        We show that over any field, the solution set to a system of $n$
        linear equations in $n$ unknowns can be computed in parallel with
        randomization simultaneously in poly-logarithmic time in $n$ and with
        only as many processors as are utilized to multiply two $n\times n$
        matrices. A time unit represents an arithmetic operation in the
        field. For singular systems our parallel timings are asymptotically as
        fast as those for non-singular systems, due to our avoidance of binary
        search in the matrix rank problem, except when the field has small
        positive characteristic; in that case, binary search is avoided to a
        somewhat higher processor count measure."
}
```

- axiom.bib -
@InProceedings\{Kalt91c,
author $=$ "Kaltofen, E. and Pan, V.",
title = "Processor efficient parallel solution of linear systems over
an abstract field",
booktitle = "Proc. SPAA '91 3rd Ann. ACM Symp. Parallel Algor. Architecture",
pages = "180--191",
publisher = "ACM Press",
year = "1991",
address $=$ "New York, N.Y.",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/91/KaPa91.pdf",
paper $=$ "Kalt91c.pdf",
abstract = "
Parallel randomized algorithms are presented that solve
$\$ n \$$-dimensional systems of linear equations and compute inverses of
$\$ n \backslash t i m e s ~ n \$ ~ n o n-s i n g u l a r ~ m a t r i c e s ~ o v e r ~ a ~ f i e l d ~ i n ~ \$ 0((l o g ~ n) ~ ~ 2) ~ \$ ~ t i m e, ~$
where each time unit represents an arithmetic operation in the field
generated by the matrix entries. The algorithms utilize with a $\$ 0(l o g n) \$$
factor as many processors as are needed to multiply two \$n\times n\$
matrices. The algorithms avoid zero divisions with controllably
high probability provided the $\$ 0(\mathrm{n})$ \$ random elements used are selected uniformly from a sufficiently large set. For fields of small positive characteristics, the processor count measures of our solutions are somewhat higher."
\}
- axiom.bib -
@InProceedings\{Kalt91,
author = "Kaltofen, E. and Saunders, B.D.",
editor $=$ "H. F. Mattson and T. Mora and T. R. N. Rao",
title $=$ "On \{Wiedemann's\} method of solving sparse linear systems",
booktitle = "Proc. AAECC-9",
series = "Lect. Notes Comput. Sci.",
volume = "539",
pages = "29--38",
publisher = "Springer-Verlag",
year = "1991",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/91/KaSa91.pdf", paper = "Kalt91.pdf",
abstract = "
Douglas Wiedemann's (1986) landmark approach to solving sparse linear systems over finite fields provides the symbolic counterpart to non-combinatorial numerical methods for solving sparse linear systems, such as the Lanczos or conjugate gradient method (see Golub and van Loan (1983)). The problem is to solve a sparse linear system, when the individual entries lie in a generic field, and the only operations possible are field arithmethic; the solution is to be exact. Such is the situation, for instance, if one works in a finite field. Wiedemann bases his approach on Krylov subspaces, but projects further to a sequence of individual field elements. By making a link to the Berlekamp / Massey problem from coding theory -- the coordinate recurrences -- and by using randomization an algorithm is obtained with the following property. On input of an $\$ n \backslash t i m e s n \$$ coefficient matrix $\$ A \$$ given by a so-called black box, which is a program that can multiply the matrix by a vector (see Figure 1), and of a vector \$b\$, the algorithm finds, with high probability in case the system is solvable, a random solution vector $\$ \mathrm{x} \$$ with $\$ \mathrm{Ax}=\mathrm{b} \$$. It is assumed that the field has sufficiently many elements, say no less than $\$ 50 n^{\wedge} 2$ $\log (x) \$$, otherwise one goes to a finite algebraic extension. The complexity of the method is in the general singular case $\$ 0$ (n log (n)) \$ calls to the black box for $\$ \mathrm{~A} \$$ and an additional $\$ \mathrm{O}\left(\mathrm{n}^{\wedge} 2\right.$ $\log (n) \wedge 2) \$$ field arithmetic operations."

```
@article{Wied86,
    author = "Wiedemann, Douglas H.",
    title = "Solving sparse linear equations over finite fields",
    journal = "IEEE Transactions on Information Theory",
    year = "1986",
    volume = "32",
    number = "1",
    pages = "54-62",
    url =
        "http://www.csd.uwo.ca/~moreno/CS424/Ressources/WIEDEMANN-IEE-1986.pdf",
    paper = "Wied86.pdf",
    abstract = "
        A ''coordinate recurrence') method for solving sparse systems of
        linear equations over finite fields is described. The algorithms
        discussed all require $0(n_1(\omega+n_1)log^k n_1)$ field operations,
        where $n_1$ is the maximum dimension of the coefficient matrix,
        $\omega$ is approximately the number of field operations required to
        apply the matrix to a test vector, and the value of $k$ depends on the
        algorithm. A probabilistic algorithm is shown to exist for finding the
        determinant of a square matrix. Also, probabilistic algorithms are
        shown to exist for finding the minimum polynomial and rank with some
        arbitrarily small possibility of error."
}
```


2.3 Algebraic Algorithms

— axiom.bib -

```
@InCollection{Diaz97,
    author = "Diaz, A. and Kaltofen, E. and Pan, V.",
    title = "Algebraic Algorithms",
    booktitle = "The Computer Science and Engineering Handbook",
    publisher = "CRC Press",
    year = "1997",
    editor = "A. B. Tucker",
    pages = "226--248",
```

```
    address = "Boca Raton, Florida",
    chapter = "10",
    keywords = "survey",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/97/DKP97.ps.gz",
    paper = "Diaz97.ps",
    ref = "00965",
    abstract = "
    The title's subject is the algorithmic approach to algebra: arithmetic
    with numbers, polynomials, matrices, differential polynomials, such as
    $y^{\prime\prime} + (1/2 + x^4/4)y$, truncated series,
    and algebraic sets, i.e.,
    quantified expressions such as $\exists x \in {\bf R}: x^4+p\cdot x+q=0$,
    which describes a subset of the two-dimensional space with
    coordinates $p$ and $q$ for which the given quartic equation has a
    real root. Algorithms that manipulate such objects are the backbone
    of modern symbolic mathematics software such as the Maple and
    Mathematica systems, to name but two among many useful systems. This
    chapter restricts itself to algorithms in four areas: linear matrix
    algebra, root finding ov univariate polynomials, solution of systems
    of nonlinear algebraic equations, and polynomial factorization."
}
```

- axiom.bib -
@InCollection\{Diaz99,
author = "Diaz, A. and Emiris, I. and Kaltofen, E. and Pan, V.",
title = "Algebraic Algorithms",
booktitle = "Algorithms $\backslash \&$ Theory of Computation Handbook",
publisher = "CRC Press",
year = "1999",
editor = "M. J. Atallah",
address $=$ "Boca Raton, Florida",
pages = "16.1--16.27",
isbn = "0-8493-2649-4",
keywords = "survey",
url = "http://www.math.ncsu.edu/ ${ }^{\text {kaltofen/bibliography/99/DEKP99.ps.gz", }}$
paper $=$ "Diaz99.ps",
abstract = "
The title's subject is the algorithmic approach to algebra: arithmetic
with numbers, polynomials, matrices, differential polynomials, such as
$\$ y^{\wedge} n+\left(1 / 2+x^{\wedge} 4 / 4\right) y \$$, truncated series, and algebraic sets, i.e.,
quantified expressions such as $\$ \backslash$ exists x \in $\{\backslash b f R\}: x^{\wedge} 4+p \backslash c d o t x+q=0 \$$,
which describes a subset of the two-dimensional space with
coordinates $\$ p \$$ and $\$ q$ for which the given quartic equation has a
real root. Algorithms that manipulate such objects are the backbone
of modern symbolic mathematics software such as the Maple and Mathematica systems, to name but two among many useful systems. This chapter restricts itself to algorithms in four areas: linear algebra, root finding for univariate polynomials, solution of systems of nonlinear algebraic equations, and polynomial factorization (see section 5 on some pointers to the vast further material on algebraic algorithms and section 2.2 and [Pan 1993] on further applications to the graph and combinatorial computations)."
— axiom.bib -
@InCollection\{Kalt87a,
author = "Kaltofen, E.",
editor $=$ "J. F. Traub",
title = "Computer algebra algorithms",
booktitle = "Annual Review in Computer Science",
pages = "91--118",
publisher = "Annual Reviews Inc.",
year = "1987",
volume = "2",
address $=$ "Palo Alto, California",
keywords = "survey,axiomref",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/87/Ka87_annrev.pdf",
paper $=$ "Kalt87a.pdf",
abstract = "
The origins of the discipline of computer algebra can be found in Issac Newton's \{\sl Universal Arithmetic\} (1728) [130], where methods for methods for manipulating universal mathematical expressions (i.e. formulas containing symbolic indeterminates) and algorithms for solving equations built with these expressions are systematically discussed. One can interpret the misson of computer algebra as the construction of computer systems that enable scientific or engineering users, for instance, to carry out mathematical manipulation automatically. Indeed, systems with this goal already exist, among them \{MACSYMA\}, \{MAPLE\}, \{muMATH\}, \{REDUCE\}, \{SAC/2\}, \{SCRATCHPAD/II\}, and \{SMP\}. These systems carry out scientific computing tasks, whose results are distinguished from numerical computing in two principle aspects."
\}

2.4 Sparse Linear Systems

```
            _ axiom.bib -
@InProceedings{Kalt96b,
    author = "Kaltofen, E.",
    title = "Blocked iterative sparse linear system solvers for finite fields",
    booktitle = "Proc. Symp. Parallel Comput. Solving Large Scale Irregular
                Applic. (Stratagem '96)",
    editor = "C. Roucairol",
    publisher = "INRIA",
    address = "Sophia Antipolis, France",
    pages = "91--95",
    year = "1996",
    keywords = "survey",
    url =
        "http://www.math.ncsu.edu/~kaltofen/bibliography/96/Ka96_stratagem.ps.gz",
    paper = "Kalt96b.ps",
    abstract = "
        The problem of solving a large sparse or structured system of linear
        equations in the symbolic context, for instance when the coefficients
        lie in a finite field, has arisen in several applications. A famous
        example are the linear systems of ${\bf F}_2$, the field with 2
        elements, that arise in sieve based integer factoring algorithms. For
        example, for the factorization of the RSA-130 challenge number several
        column dependencies of a $3504823\times 3516502$ matrix with an
        average of $39.4.$ non-zero entries per column needed to be computed
        [10]. A second example is the Berlekamp polynomial factorization
        algorithm [6]. In that example, the matrix is not explicitly
        constructed, but instead a fast algorithm for performing the matrix
        times vector product is used. Further examples for such ''black box
        matrices'' arise in the power series solutoin of algebraic or
        differential equations by undetermined coefficients. The arising
        linear systems for the coefficients usually have a distinct structure
        that allows a fast coefficient matrix times vector product."
}
```


2.5 Matrix Determinants

\qquad
@Article\{Kalt04,

```
    author = "Kaltofen, E. and Villard, G.",
    title = "Computing the sign or the value of the determinant of an integer
        matrix, a complexity survey",
    journal = "J. Computational Applied Math.",
    volume = "162",
    number = "1",
    month = "January",
    pages = "133--146",
    year = "2004",
    keywords = "survey",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/02/KaVi02.pdf",
    paper = "Kalt04.pdf",
    abstract = "
    Computation of the sign of the determinant of a matrix and the
    determiant itself is a challenge for both numerical and exact
    methods. We survey the complexity of existing methods to solve these
    problems when the input is an $n\times n$ matrix $A$ with integer
    entries. We study the bit-complexities of the algorithms
    asymptotically in $n$ and the norm $A$. Existing approaches rely on
    numerical approximate computations, on exact computations, or on both
    types of arithmetic in combination."
```

\}

2.6 Open Problems

\qquad
@Article\{Kalt00,
author = "Kaltofen, E.",
title = "Challenges of Symbolic Computation My Favorite Open Problems",
journal = "Journal of Symbolic Computation",
volume = "29",
number = "6",
pages = "891--919",
year = "2000",
keywords = "survey",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/2K/Ka2K.pdf",
paper = "Kalt00.pdf",
abstract = "
The success of the symbolic mathematical computation discipline is
striking. The theoretical advances have been continuous and significant:
Gr\{\"o\}bner bases, the Risch integration algorithm, integer lattice
basis reduction, hypergeometric summation algorithms, etc. From the
beginning in the early 60s, it has been the tradition of our discipline

Abstract

to create software that makes our ideas readily available to a scientists, engineers, and education: \{SAC-1\}, \{Reduce\}, \{Macsyma\}, etc. The commercial viability of our system products is proven by Maple and Mathematica.

Today's user communities of symbolic computation systems are diverse: educators, engineers, stock market anaysts, etc. The mathematics and computer science in the design and implementation of our algorithms are sophisticated. The research challenges in symbolic computation at the close of the 20th century are formidable.

I state my favorite eight open problems in symbolic computations. They range from problems in symbolic /numeric computing, symbolic algorithm synthesis, to system component construction. I have worked on seven of my problems and borrowed one from George Collins. I present background to each of my problems and a clear-cut test that evaluates whether a proposed attack has solved one of my problems. An additional ninth open problem by Rob Corless and David Jeffrey on complex function semantics is given in an appendix."

\}

2.7 Parallel Evaluation

```
            - axiom.bib -
@InCollection{Kalt93a,
    author = "Kaltofen, E.",
    editor = "J. Reif",
    title = "Dynamic parallel evaluation of computation {DAG}s",
    booktitle = "Synthesis of Parallel Algorithms",
    pages = "723--758",
    publisher = "Morgan Kaufmann Publ.",
    year = "1993",
    address = "San Mateo, California",
    keywords = "survey",
    url =
        "http://www.math.ncsu.edu/~kaltofen/bibliography/93/Ka93_synthesis.ps.gz",
    paper = "Kalt93a.ps",
    abstract = "
        One generic parallel evaluation scheme for algebraic objects, that of
        evaluating algebraic computation trees or formulas, is presented by
        Miller in a preceding chapter of this book. However, there are basic
        algebraic functions for which the tree model of computation seems not
        sufficient to allow an eficient -- even sequential -- decision-free
```

algebraic computation. The formula model essentially restricts the use of an intermediate result to a single place, because the parse tree nodes have fan-out one. If an intermediate result participates in the computations of several further nodes, in the tree model it must be recomputed anew for each of these nodes. It is a small formal change to allow node values to propagate to more than one node deeper level of the computation. Thus we obtain the $\{\backslash$ sl algebraic circuit model\}, which is equivalent to the $\{\backslash$ sl straight-line program model\}."
\}

2.8 Hybrid Symbolic/Numeric

- axiom.bib -
@InProceedings\{Kalt06, author $=$ "Kaltofen, Erich and Zhi, Lihong", title = "Hybrid Symbolic-Numeric Computation", year = "2006", booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC’06", crossref = "ISSAC06", pages = "7", url = "http://www.math.ncsu.edu/~kaltofen/bibliography/06/KaZhi06.pdf", paper $=$ "Kalt06.pdf", abstract = "

Several standard problems in symbolic computation, such as greatest common divisors and factorization of polynomials, sparse interpolation, or computing solutions to overdetermined systems of polynomial equations have non-trivial solutions only if the input coefficients satisfy certain algebraic constraints. Errors in the coefficients due to floating point round-off or through physical measurement thus render the exact symbolic algorithms unusable. By symbolic-numeric methods one computes minimal deformations of the coefficients that yield non-trivial results. We will present hybrid algorithms and benchmark computations based on Gauss-Newton optimazation, singular value decomposition (SVD) and structure-preserving total least squares (STLS) fitting for several of the above problems.

A significant body of results to solve those 'sapproximate computer algebra', problems has been discovered in the past 10 years. In the Computer Algebra Handbook the section on ''Hybrid Methods'' concludes as follows [2]: ''The challenge of hybrid symbolic-numeric algorithms is to explore the effects of imprecision, discontinuity, and algorithmic complexity by applying mathematical optimization,
perturbation theory, and inexact arithmetic and other tools in order to solve mathematical problems that today are not solvable by numeriiical or symbolic methods alone.', The focus of our tutorial is on how to formulate several approximate symbolic computation problems as numerical problems in linear algebra and optimization and on software that realizes their solutions."
\}

- axiom.bib -
@InProceedings\{Hutt10,
author = "Hutton, Sharon E. and Kaltofen, Erich L. and Zhi, Lihong",
title = "Computing the radius of positive semidefiniteness of a multivariate real polynomial via a dual of \{Seidenberg\}'s method",
year = "2010",
booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'10",
crossref = "ISSAC10",
pages = "227--234",
month = "July",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/10/HKZ10.pdf",
paper = "Hutt10.pdf",
abstract = "
We give a stability criterion for real polynomial inequalities with floating point or inexact scalars by estimating from below or computing the radius of semdefiniteness. That radious is the maximum deformation of the polynomial coefficent vector measured in a weighted Euclidean vector norm within which the inequality remains true. A large radius means that the inequalities may be considered numerically valid.

The radius of positive (or negative) semidefiniteness is the distance to the nearest polynomial with a real root, which has been thoroughly studied before. We solve this problem by parameterized Lagrangian multipliers and Karush-Kuhn-Tucker conditions. Our algorithms can compute the radius for several simultaneous inequalities including possibly additional linear coefficient constraints. Our distance measure is the weighted Euclidena coefficient norm, but we also discuss several formulas for the weighted infinity and 1-norms.

The computation of the nearest polynomial with a real root can be interpreted as a dual of Seidenberg's method that decides if a real hypersurface contains a real point. Sums-of-squares rational lower bound certificates for the radius of semidefinitesness provide a new approach to solving Seidenberg's problem, especially when the coeffcients are numeric. They also offer a surprising alternative sum-of-squares proof for those polynomials that themselves cannot be
represented by a polynomial sum-of-squares but that have a positive distance to the nearest indefinte polynomial."

```
}
```

- axiom.bib -
@InProceedings\{Kalt09,
author = "Kaltofen, Erich and Yang, Zhengfeng and Zhi, Lihong",
title $=$ "A Proof of the \{Monotone Column Permanent (MCP) Conjecture\} for Dimension 4 via Sums-Of-Squares of Rational Functions", year = "2009",
booktitle = "Proc. 2009 Internat. Workshop on Symbolic-Numeric Comput.",
crossref = "SNC09",
pages = "65--69",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/09/KYZ09.pdf",
paper = "Kalt09.pdf",
abstract = "
For a proof of the monotone column permanent (MCP) conjecture for dimension 4 it is sufficient to show that 4 polynomials, which come rom the permanents of real marices, are nonnegative for all real values of the variables, where the degrees and the number of the variables of these polynomials are all 8. Here we apply a hybrid symbolic-numerical algorithm for certifying that these polynomials can be written as an exact fraction of two polynomial sums-of-squares (SOS) with rational coefficients."
\}
— axiom.bib -
@Article\{Kalt12,
author $=$ "Kaltofen, Erich L. and Li, Bin and Yang, Zhengfeng and Zhi, Lihong",
title = "Exact Certification in Global Polynomial Optimization
Via Sums-Of-Squares of Rational Functions with Rational Coefficients",
year = "2012",
month = "January",
journal = "Journal of Symbolic Computation",
volume $=" 47 "$,
number = "1",
pages = "1--15", url = "http://www.math.ncsu.edu/~kaltofen/bibliography/09/KLYZ09.pdf",

```
    paper = "Kalt12.pdf",
    abstract = "
    We present a hybrid symbolic-numeric algorithm for certifying a
    polynomial or rational function with rational coefficients to be
    non-negative for all real values of the variables by computing a
    representation for it as a fraction of two polynomial sum-of-squares
    (SOS) with rational coeficients. Our new approach turns the earlier
    methods by Peyrl and Parrilo and SCN'07 and ours at ISSAC'08 both
    based on polynomial SOS, which do not always exist, into a universal
    algorithm for all inputs via Artin's theorem.
    Furthermore, we scrutinize the all-important process of converting the
    numerical SOS numerators and denomiators produced by block
    semidefinite programming into an exact rational identity. We improve
    on our own Newton iteration-based high precision refinement algorithm
    by compressing the initial Gram matrices and by deploying rational
    vector recovery aside from orthogonal projection. We successfully
    demenstrate our algorithm on 1. various exceptional SOS problems with
    necessary polynomial denominators from the literature and on 2. very
    large (thousands of variables) SOS lower bound certificates for Rump's
    model problem (up to $n=18$, factor degree $=17$)."
}
```

- axiom.bib -
@InProceedings\{Kalt08b,
author = "Kaltofen, Erich and Li, Bin and Yang, Zhengfeng and Zhi, Lihong",
title = "Exact Certification of Global Optimality of Approximate
Factorizations Via Rationalizing Sums-Of-Squares
with Floating Point Scalars",
year = "2008",
booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC’08",
crossref = "ISSAC08",
pages = "155--163",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/08/KLYZ08.pdf",
paper = "Kalt08b.pdf",
abstract = "
We generalize the technique by Peyrl and Parillo [Proc. SNC 2007] to
computing lower bound certificates for several well-known
factorization problems in hybrid symbolic-numeric computation. The
idea is to transform a numerical sum-of-squares (SOS) representation
of a positive polynomial into an exact rational identity. Our
algorithms successfully certify accurate rational lower bounds near
the irrational global optima for benchmark approximate polynomial
greatest common divisors and multivariate polynomial irreducibility
radii from the literature, and factor coefficient bounds in the
setting of a model problem by Rump (up to $\$ n=14 \$$, factor degree $\$=13 \$$).

The numeric SOSes produced by the current fixed precision
semi-definite programming (SDP) packages (SeDuMi, SOSTOOLS, YALMIP)
are usually too coarse to allow successful projection to exact SOSes via Maple 11's exact linear algebra. Therefore, before projection we refine the SOSes by rank-preserving Newton iteration. For smaller problems the starting SOSes for Newton can be guessed without SDP (''SDP-free SOS''), but for larger inputs we additionally appeal to sparsity techniques in our SDP formulation."

```
}
```

- axiom.bib -
@InProceedings\{Kalt06b, author = "Kaltofen, Erich and Yang, Zhengfeng and Zhi, Lihong", title = "Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials", year = "2006", booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC’06", crossref = "ISSAC06",
pages = "169--176",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/06/KYZ06.pdf", paper = "Kalt06b.pdf",
abstract = "
We consider the problem of computing minimal real or complex deformations to the coefficients in a list of relatively prime real or complex multivariate polynomials such that the deformed polynomials have a greatest common divisor (GCD) of a least a given degree \$k\$. In addition, we restrict the deformed coefficients by a given set of linear constraints, thus introducing the \{\sl linearly constrained aproximate GCD\} problem. We present an algorithm based on a version of the structured total least norm (STLN) method and demonstrate, on a diverse set of benchmark polynomials, that the algorithm in practice computes globally minimal approximations. As an application of the linearly constrained approximate GCD problem, we present an STLN-based method that computes for a real or complex polynomial the nearest real or complex polynomial the nearest real or complex polynomial that has a root of multiplicity at least $\$ k \$$. We demonstrate that the algorithm in practice computes, on the benchmark polynomials given in the literate, the known globally optimal nearest singular polynomials. Our algorithms can handle, via randomized preconditioning, the difficult case when the nearest solution to a list of real input polynomials actually has non-real complex coefficients."

— axiom.bib -

```
@InCollection{Kalt05,
    author = "Kaltofen, Erich and Yang, Zhengfeng and Zhi, Lihong",
    title = "Structured Low Rank Approximation of a {Sylvester} Matrix",
    booktitle = "Symbolic-Numeric Computation",
    crossref = "SNC06",
    pages = "69--83",
    year = "2005",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/05/KYZ05.pdf",
    paper = "Kalt05.pdf",
    abstract = "
        The task of determining the approximate greatest common divisor (GCD)
        of univariate polynomials with inexact coefficients can be formulated
        as computing for a given Sylvester matrix a new Sylvester matrix of
        lower rank whose entries are near the corresponding entries of that
        input matrix. We solve the approximate GCD problem by a new method
        based on structured total least norm (STLN) algorithms, in our case
        for matrices with Sylvester structure. We present iterative algorithms
        that compute an approximate GCD and that can certify an approximate
        $\epsilon$-GCD when a tolerence $\epsilon$ is given on input. Each
        single iteration is carried out with a number of floating point
        operations that is of cubic order in the input degrees. We also
        demonstrate the practical performance of our algorithms on a diverse
        set of univariate pairs of polynomials."
}
```

- axiom.bib -
@InProceedings\{Kalt03a,
author = "Kaltofen, Erich and May, John",
title = "On Approximate Irreducibility of Polynomials in Several Variables",
year = "2003",
booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'03",
crossref = "ISSAC03",
pages = "161--168",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/03/KMO3.pdf",
paper = "Kalt03a.pdf",
abstract = "
We study the problem of bounding all factorizable polynomials away
from a polynomial that is absolutely irreducible. Such separation
bounds are useful for testing whether a numerical polynomial is absolutely irreducible, given a certain tolerance on its coefficients Using an absolute irreducibility criterion due to Ruppert, we are able to find useful separation bounds, in several norms, for bivariate polynomials. We also use Ruppert's criterion to derive new, more effective Noether forms for polynomials of arbitrarily many variables. These forms lead to small separation bounds for polynomials of arbitrarily many variables."
\}
— axiom.bib -
@InProceedings\{Gao04a,
author = "Gao, Shuhong and Kaltofen, Erich and May, John P. and Yang, Zhengfeng and Zhi, Lihong",
title $=$ "Approximate factorization of multivariate polynomials via differential equations",
year = "2004",
booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'04",
crossref = "ISSAC04",
pages = "167--174",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/04/GKMYZ04.pdf",
paper $=$ "Gao04a.pdf",
abstract = "
The input to our algorithm is a multivariate polynomial, whose complex rational coefficient are considered imprecise with an unknown error that causes $\$ \mathrm{f} \$$ to be irreducible over the complex numbers $\{\backslash \mathrm{bf} \mathrm{C}\}$. We seek to perturb the coefficients by a small quantity such that the resulting polynomial factors over $\{\backslash \mathrm{bf} \mathrm{C}\}$. Ideally, one would like to minimize the perturbation in some selected distance measure, but no efficient algorithm for that is known. We give a numerical multivariate greatest common divisor algorithm and use it on a numerical variant of algorithms by W. M. Ruppert and S. Gao. Our numerical factorizer makes repeated use of singular value decompositions. We demonstrate on a significant body of experimental data that our algorithm is practical and can find factorizable polynomials within a distance that is about the same in relative magnitude as the input error, even when the relative error in the input is substantial (\$10^\{-3\})."
\}
— axiom.bib -

```
@Article{Kalt08,
    author = "Kaltofen, Erich and May, John and Yang, Zhengfeng and Zhi, Lihong",
    title = "Approximate Factorization of Multivariate Polynomials Using
                Singular Value Decomposition",
    year = "2008",
    journal = "Journal of Symbolic Computation",
    volume = "43",
    number = "5",
    pages = "359--376",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/07/KMYZ07.pdf",
    paper = "Kalt08.pdf",
}
```

- axiom.bib -
@InProceedings\{Hitz99,
author = "Hitz, M.A. and Kaltofen, E. and Lakshman, Y.N.",
title = "Efficient Algorithms for Computing the Nearest Polynomial
With A Real Root and Related Problems",
booktitle = "Proc. 1999 Internat. Symp. Symbolic Algebraic Comput.",
crossref = "ISSAC99",
pages = "205--212",
year = "1999",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/99/HKL99.pdf",
paper = "Hitz99.pdf",
\}
- axiom.bib -
@InProceedings\{Hitz98,
author = "Hitz, M. A. and Kaltofen, E.",
title = "Efficient Algorithms for Computing the Nearest Polynomial with Constrained Roots",
booktitle = "Proc. 1998 Internat. Symp. Symbolic Algebraic Comput.", crossref = "ISSAC98", year = "1998", pages = "236--243", url = "http://www.math.ncsu.edu/~kaltofen/bibliography/98/HiKa98.pdf", paper = "Hitz98.pdf",

2.9 Software Systems

- axiom.bib -

```
@InProceedings{Diaz91,
    author = "Diaz, A. and Kaltofen,E. and Schmitz, K. and Valente, T.",
    title = "DSC A System for Distributed Symbolic Computation",
    booktitle = "Proc. 1991 Internat. Symp. Symbolic Algebraic Comput.",
    crossref = "ISSAC91",
    pages = "323--332",
    year = "1991",
    url = "http://www.math.ncsu.edu/~}kaltofen/bibliography/91/DKSV91.pdf"
    paper = "Diaz91.pdf",
}
```

— axiom.bib -
@InProceedings\{Chan94,
author $=$ "Chan, K.C. and Diaz, A. and Kaltofen, E.",
editor = "R. J. Lopez",
title $=$ "A distributed approach to problem solving in Maple",
booktitle = "Maple V: Mathematics and its Application",
pages = "13--21",
publisher = \{Birkh\"auser\},
year = "1994",
series $=$ "Proceedings of the Maple Summer Workshop and Symposium (MSWS'94)",
address $=$ "Boston",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/94/CDK94.ps.gz",
paper = "Chan94.ps",
\}

- axiom.bib -
@InProceedings\{Duma02,
author = "Dumas, J.-G. and Gautier, T. and Giesbrecht, M. and Giorgi, P.
and Hovinen, B. and Kaltofen, E. and Saunders, B.D. and
Turner, W.J. and Villard, G.",
title $=$ "\{LinBox\}: A Generic Library for Exact Linear Algebra",
booktitle $=$ "Proc. First Internat. Congress Math. Software ICMS 2002,
Beijing, China",

```
    crossref = "ICMS02",
    pages = "40--50",
    year = "2002",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/02/Detal02.pdf",
    paper = "Duma02.pdf",
}
- axiom.bib -
```

```
@InProceedings{Kalt05a,
```

@InProceedings{Kalt05a,
author = "Kaltofen, Erich and Morozov, Dmitriy and Yuhasz, George",
author = "Kaltofen, Erich and Morozov, Dmitriy and Yuhasz, George",
title = "Generic Matrix Multiplication and Memory Management in {LinBox}",
title = "Generic Matrix Multiplication and Memory Management in {LinBox}",
year = "2005",
year = "2005",
booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC’05",
booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC’05",
crossref = "ISSAC05",
crossref = "ISSAC05",
pages = "216--223",
pages = "216--223",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/05/KMY05.pdf",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/05/KMY05.pdf",
paper = "Kalt05a.pdf",
paper = "Kalt05a.pdf",
}

```
}
```

— axiom.bib -
@InProceedings\{Diaz98,
author = "Diaz, A. and Kaltofen, E.",
title $=$ "\{FoxBox\}, a System for Manipulating Symbolic Objects in Black Box Representation",
booktitle = "Proc. 1998 Internat. Symp. Symbolic Algebraic Comput.",
crossref = "ISSAC98",
year = "1998",
pages = "30--37",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/98/DiKa98.pdf",
paper = "Diaz98.pdf",
\}

- axiom.bib -
@InProceedings\{Diaz93,

```
    author = "Diaz, A. and Kaltofen, E. and Lobo, A. and Valente, T.",
    editor = "A. Miola",
    title = "Process scheduling in {DSC} and the large sparse linear
        systems challenge",
    booktitle = "Proc. DISCO '93",
    series = "Lect. Notes Comput. Sci.",
    pages = "66--80",
    year = "1993",
    volume = "722",
    publisher = "Springer-Verlag",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/93/DHKLV93.pdf",
    paper = "Diaz93.pdf",
}
```

— axiom.bib -
@Article\{Diaz95a,
author = "Diaz, A. and Hitz, M. and Kaltofen, E. and Lobo, A. and
Valente, T.",
title = "Process scheduling in \{DSC\} and the large sparse linear
systems challenge",
journal = "Journal of Symbolic Computing",
year = "1995",
volume = "19",
number = "1--3",
pages = "269--282",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/95/DHKLV95.pdf",
paper = "Diaz95a.pdf",
\}

- axiom.bib -

```
@Article{Free88,
    author = "Freeman, T.S. and Imirzian, G. and Kaltofen, E. and
                Yagati, Lakshman",
    title = "DAGWOOD: A system for manipulating polynomials given by
            straight-line programs",
    journal = "ACM Trans. Math. Software",
    year = "1988",
    volume = "14",
    number = "3",
    pages = "218--240",
```

```
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/88/FIKY88.pdf",
    paper = "Free88.pdf",
}
```


2.10 The Seven Dwarfs

- axiom.bib -
@InCollection\{Kalt10a,
author = "Kaltofen, Erich L.", title = "The '‘Seven\} \{Dwarfs\}') of Symbolic Computation", booktitle $=\quad$ Numeric and Symbolic Scientific Computing Progress and Prospects",
crossref = "LaPau12",
pages = "95--104",
year = "2010",
keywords = "survey", url = "http://www.math.ncsu.edu/~kaltofen/bibliography/10/Ka10_7dwarfs.pdf", paper = "Kalt10a.pdf",
\}

2.11 Solving Systems of Equations

- axiom.bib -
@inproceedings\{Bro86, author = "Bronstein, Manuel", title = "Gsolve: a faster algorithm for solving systems of algebraic equations",
booktitle = "Proc of 5th ACM SYMSAC",
year = "1986",
pages = "247-249",
isbn = "0-89791-199-7",
abstract $=$ "
We apply the elimination property of $\operatorname{Gr}\{\backslash " \circ\}$ bner bases with respect to pure lexicographic ordering to solve systems of algebraic equations. We suggest reasons for this approach to be faster than the resultant technique, and give examples and timings that show that it is indeed

```
faster and more correct, than MACSYMA's solve."
```

\}

2.12 Numerical Algorithms

- ignore -
\{Bro99,
author = "Bronstein, Manuel",
title = "Fast Deterministic Computation of Determinants of Dense Matrices",
url = "http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html",
paper = "Bro99.pdf",
abstract = "

In this paper we consider deterministic computation of the exact determinant of a dense matrix $\$ M \$$ of integers. We present a new algorithm with worst case complexity $$
O(n^4(log n+ log \verb?||M||?)+x^3 log^2 \verb?||M||?)
$$, where $\$ \mathrm{n} \$$ is the dimension of the matrix and \verb?||M||? is a bound on the entries in $\$ \mathrm{M} \$$, but with average expected complexity $$
0(n^4+m^3(log n + log \verb?||M||?)^2)
$$, assuming some plausible properties about the distribution of $\$ \mathrm{M} \$$. We will also describe a practical version of the algorithm and include timing data to compare this algorithm with existing ones. Our result does not depend on '(fast') integer or matrix techniques."

\}
\qquad
@misc\{Fate13,
author = "Fateman, Richard J.",
title = "Interval Arithmetic, Extended Numbers and Computer Algebra Systems",
year = "2013",
paper = "Fate13.pdf",
url = "http://www.cs.berkeley.edu/~fateman/papers/interval.pdf",
keywords = "axiomref",
abstract =
"Many ambitious computer algebra systems were initially designed in a
flush of enthusiasm, with the goal of automating any symbolic
mathematical manipulation 'correctly". Historically, this approach
results in programs that implicitly used certain identities to simplify expressions. These identities, which very likely seemed universally true to the programmers in the heat of writing the CAS (and often were true in well-known abstract algebraic domains) later neede re-examination when such systems were extended for dealing with kinds of objects unanticipated in the original design. These new objects are generally introduced to the CAS by extending ''generically', the arithmetic of other operations. For example, approximate floats do not have the mathematical properties of exact integers or rationals. Complex numbers may strain a system designed for real-valued variables. In the situation examined here, we consider two categories of ''extended'' numbers: \$\infty\$ and \{\sl undefined\}, and real intervals. We comment on issues raised by these two troublesome notions, how their introduction into a computer algebra system may require a (sometimes painful) reconsideration and redesign of parts of the program, and how they are related. An alternative (followed most notably by the Axiom system is to essentially envision a '(meta', CAS defined in terms of categories and inheritance with only the most fundamental built-in concepts; from these one can build many variants of specific CAS features. This approach is appealing but can fail to accommodate extensions that violate some mathematical tenets in the cause of practicality."

- ignore -

\{Kel00,
author = "Kelsey, Tom",
title = "Exact Numerical Computation via Symbolic Computation",
url = "http://tom.host.cs.st-andrews.ac.uk/pub/ccapaper.pdf",
paper $=$ "Kel00.pdf",
abstract = "
We provide a method for converting any symbolic algebraic expression that can be converted into a floating point number into an exact numeric representation. We use this method to demonstrate a suite of procedures for the representation of, and arithmetic over, exact real numbers in the Maple computer algebra system. Exact reals are represented by potentially infinite lists of binary digits, and interpreted as sums of negative powers of the golden ratio."

```
@article{Stou07,
    author = "Stoutemyer, David R.",
    title = "Useful Computations Need Useful Numbers",
    year = "2007",
    publisher = "ACM",
    journal = "Communications in Computer Algebra",
    volume = "41",
    number = "3",
    abstract =
        "Most of us have taken the exact rational and approximate numbers in
        our computer algebra systems for granted for a long time, not thinking
        to ask if they could be significantly better. With exact rational
        arithmetic and adjustable-precision floating-point arithmetic to
        precision limited only by the total computer memory or our patience,
        what more could we want for such numbers? It turns out that there is
        much that can be done that permits us to obtain exact results more
        often, more intelligible results, approximate results guaranteed to
        have requested error bounds, and recovery of exact results from
        approximate ones."
}
```

- ignore -
\{Yang14,
author ="Yang, Xiang and Mittal, Rajat",
title = "Acceleration of the Jacobi iterative method by factors exceeding 100
using scheduled relation",
url =
"http://engineering.jhu.edu/fsag/wp-content/uploads/sites/23/2013/10/JCP_revised_WebPost.pdf",
paper = "Yang14.pdf",
\}

2.13 Special Functions

- ignore -
\{Corl0,

```
    author = "Corless, Robert M. and Jeffrey, David J. and Watt, Stephen M.
            and Bradford, Russell and Davenport, James H.",
    title = "Reasoning about the elementary functions of complex analysis",
    url = "http://www.csd.uwo.ca/~watt/pub/reprints/2002-amai-reasoning.pdf",
    paper = "Corl05.pdf",
    abstract = "
    There are many problems with the simplification of elementary
    functions, particularly over the complex plane. Systems tend to make
    ''howlers'' or not to simplify enough. In this paper we outline the
    ''unwinding number'' approach to such problems, and show how it can be
    used to prevent errors and to systematise such simplification, even
    though we have not yet reduced the simplification process to a
    complete algorithm. The unsolved problems are probably more amenable
    to the techniques of artificial intelligence and theorem proving than
    the original problem of complex-variable analysis."
}
```

 - ignore -
 \{Ng68,
author = "Ng, Edward W. and Geller, Murray",
title = "A Table of Integrals of the Error functions",
url = "http://nvlpubs.nist.gov/nistpubs/jres/73B/jresv73Bn1p1_A1b.pdf",
paper $=$ "Ng68.pdf",
abstract = "
This is a compendium of indefinite and definite integrals of products
of the Error functions with elementary and transcendental functions."
\}

2.14 Exponential Integral $E_{1}(x)$

> — ignore -
\{Gell69,
author = "Geller, Murray and Ng, Edward W.",
title = "A Table of Integrals of the Exponential Integral",
url = "http://nvlpubs.nist.gov/nistpubs/jres/73B/jresv73Bn3p191_A1b.pdf",
paper = "Gell69.pdf",
abstract = "
This is a compendium of indefinite and definite integrals of products

```
    of the Exponential Integral with elementary or transcendental functions."
```

\}
— axiom.bib -
@techreport\{Seg198,
author = "Segletes, S.B.",
title = "A compact analytical fit to the exponential integral \$E_1(x)\$", year = "1998",
institution = "U.S. Army Ballistic Research Laboratory,
Aberdeen Proving Ground, MD",
type = "Technical Report",
number = "ARL-TR-1758",
paper = "Segl98.pdf",
abstract = "
A four-parameter fit is developed for the class of integrals known as the exponential integral (real branch). Unlike other fits that are piecewise in nature, the current fit to the exponential integral is valid over the complete domain of the function (compact) and is everywhere accurate to within $\$ \backslash p m 0.0052 \backslash \%$ when evaluating the first exponential integral, \$E_1\$. To achieve this result, a methodology that makes use of analytically known limiting behaviors at either extreme of the domain is employed. Because the fit accurately captures limiting behaviors of the \$E_1\$ function, more accuracy is retained when the fit is used as part of the scheme to evaluate higher-order exponential integrals, \$E_n\$, as compared with the use of brute-force fits to $\$ E _1 \$$, which fail to accurately model limiting
behaviors. Furthermore, because the fit is compact, no special accommodations are required (as in the case of spliced piecewise fits) to smooth the value, slope, and higher derivatives in the transition region between two piecewise domains. The general methodology employed to develop this fit is outlined, since it may be used for other problems as well."
\}

- axiom.bib -
@techreport\{Se09,
author = "Segletes, S.B.",
title $=$ "Improved fits for $\$ E_{-} 1(x) \$\{\backslash s l$ vis-\'a-vis\} those presented in ARL-TR-1758",
type $=$ "Technical Report",

```
    number = "ARL-TR-1758",
    institution ="U.S. Army Ballistic Research Laboratory,
                Aberdeen Proving Ground, MD",
year = "1998",
month = "September",
paper = "Se09.pdf",
abstract = "
    This is a writeup detailing the more accurate fits to $E_1(x)$,
    relative to those presented in ARL-TR-1758. My actual fits are to
    \[F1 =[x\ exp(x) E_1(x)]\] which spans a functional range from 0 to 1.
    The best accuracy I have been yet able to achieve, defined by limiting
    the value of \[[(F1)_{fit} - F1]/F1\] over the domain, is
    approximately 3.1E-07 with a 12-parameter fit, which unfortunately
    isn't quite to 32-bit floating-point accuracy. Nonetheless, the fit
    is not a piecewise fit, but rather a single continuous function over
    the domain of nonnegative x, which avoids some of the problems
    associated with piecewise domain splicing."
}
```


2.15 Polynomial GCD

\qquad
@InProceedings\{Kalt99a,
author = "Kaltofen, E. and Monagan, M.",
title = "On the Genericity of the Modular Polynomial \{GCD\} Algorithm", booktitle = "Proc. 1999 Internat. Symp. Symbolic Algebraic Comput.", crossref = "ISSAC99", year = "1999", pages = "59--66", url = "http://www.math.ncsu.edu/~kaltofen/bibliography/99/KaMo99.pdf", paper = "Kalt99a.pdf",
\}

- ignore -
\bibitem[Knuth 71] \{ST-PGCD-Knu71\}
author = "Knuth, Donald",
title = "The Art of Computer Programming Vol. 2 (Seminumerical Algorithms)", year $=$ "1971,

```
publisher = "Addison-Wesley",
```

— axiom.bib -

```
@article{Ma90,
    author = "Ma, Keju and {von zur Gathen}, Joachim",
    title =
        "Analysis of Euclidean Algorithms for Polynomials over Finite Fields",
    journal = "J. Symbolic Computation",
    year = "1990",
    volume = "9",
    pages = "429-455",
    url = "http://www.researchgate.net/publication/220161718_Analysis_of_Euclidean_Algorithms_for_Polynomials
    paper = "Ma90.pdf",
    abstract = "
        This paper analyzes the Euclidean algorithm and some variants of it
        for computing the greatest common divisor of two univariate polynomials
        over a finite field. The minimum, maximum, and average number of
        arithmetic operations both on polynomials and in the ground field
        are derived."
}
```

- ignore -
\bibitem[Naylor 00a] \{NOO\} Naylor, Bill
title = "Polynomial GCD Using Straight Line Program Representation", PhD. Thesis, University of Bath, 2000
url = "http://www.sci.csd.uwo.ca/~bill/thesis.ps",
paper $=$ "NOO.pdf",
abstract $=$ "
This thesis is concerned with calculating polynomial greatest common divisors using straight line program representation.

In the Introduction chapter, we introduce the problem and describe some of the traditional representations for polynomials, we then talk about some of the general subjects central to the thesis, terminating with a synopsis of the category theory which is central to the Axiom computer algebra system used during this research.

The second chapter is devoted to describing category theory. We follow
with a chapter detailing the important sections of computer code written in order to investigate the straight line program subject. The following chapter on evalution strategies and algorithms which are dependant on these follows, the major algorith which is dependant on evaluation and which is central to our theis being that of equality checking. This is indeed central to many mathematical problems. Interpolation, that is the determination of coefficients of a polynomial is the subject of the next chapter. This is very important for many straight line program algorithms, as their non-canonical structure implies that it is relatively difficult to determine coefficients, these being the basic objects that many algorithms work on. We talk about three separate interpolation techniques and compare their advantages and disadvantages. The final two chapters describe some of the results we have obtained from this research and finally conclusions we have drawn as to the viability of the straight line program approach and possible extensions.

Finally we terminate with a number of appendices discussing side subjects encountered during the thesis."
— ignore -
\bibitem[Shoup 93] \{ST-PGCD-Sh93\} Shoup, Victor
title = "Factoring Polynomials over Finite Fields: Asymptotic Complexity vs Reality*", Proc. IMACS Symposium, Lille, France, (1993)
url = "http://www.shoup.net/papers/lille.pdf",
paper $=$ "ST-PGCD-Sh93.pdf",
abstract = "
This paper compares the algorithms by Berlekamp, Cantor and
Zassenhaus, and Gathen and Shoup to conclude that (a) if large polynomials are factored the FFT should be used for polynomial multiplication and division, (b) Gathen and Shoup should be used if the number of irreducible factors of $\$ f \$$ is small. (c) if nothing is know about the degrees of the factors then Berlekamp's algorithm should be used."

- ignore -
\bibitem[Gathen 01]\{ST-PGCD-Ga01\} von zur Gathen, Joachim; Panario, Daniel title = "Factoring Polynomials Over Finite Fields: A Survey",
J. Symbolic Computation (2001) Vol 31, pp3-17\hfill\{\}
url =

```
    "http://people.csail.mit.edu/dmoshdov/courses/codes/poly-factorization.pdf",
paper = "ST-PGCD-Ga01.pdf",
keywords = "survey",
abstract = "
    This survey reviews several algorithms for the factorization of
    univariate polynomials over finite fields. We emphasize the main ideas
    of the methods and provide and up-to-date bibliography of the problem.
    This paper gives algorithms for {\sl squarefree factorization},
    {\sl distinct-degree factorization}, and {\sl equal-degree factorization}.
    The first and second algorithms are deterministic, the third is
    probabilistic."
```

 — ignore -
 \bibitem[van Hoeij]\{Hoeij04\} \{van Hoeij\}, Mark; Monagan, Michael
 title = "Algorithms for Polynomial GCD Computation over Algebraic Function Fields",
 url = "http://www.cecm.sfu.ca/personal/mmonagan/papers/AFGCD.pdf",
 paper = "Hoeij04.pdf",
 abstract = "
 Let \(\$ \mathrm{~L} \$\) be an algebraic function field in \(\$ \mathrm{k}\) \ge \(0 \$\) parameters
 \(\$ \mathrm{t} _1, \backslash l\) dots,t) \(\mathrm{k} \$\). Let \(\$ \mathrm{f}_{-} 1 \$\), \(\$ \mathrm{f} _2 \$\) be non-zero polynomials in
 \$L[x]\$. We give two algorithms for computing their gcd. The first, a
 modular GCD algorithm, is an extension of the modular GCD algorithm
 for Brown for \(\{\backslash \mathrm{bf} \mathrm{Z}\}\) \$[x_1, \ldots, \(\left.\mathrm{x}_{\mathbf{\prime}} \mathrm{n}\right] \$\) and Encarnacion for \(\{\backslash \mathrm{bf}\)
 Q\}\$(\alpha[x])\$ to function fields. The second, a fraction-free
 algorithm, is a modification of the Moreno Maza and Rioboo algorithm
 for computing gcds over triangular sets. The modification reduces
 coefficient grownth in \$L\$ to be linear. We give an empirical
 comparison of the two algorithms using implementations in Maple."

- ignore -

\bibitem[Wang 78]\{Wang78\} Wang, Paul S.
title = "An Improved Multivariate Polynomial Factoring Algorithm",
Mathematics of Computation, Vol 32, No 144 Oct 1978, pp1215-1231 url = "http://www.ams.org/journals/mcom/1978-32-144/S0025-5718-1978-0568284-3/S0025-5718-1978-0568284-3.p paper = "Wang78.pdf",
abstract = "
A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient
problem, the bad-zero problem and the occurence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorith named EEZ is described. Basically it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store than the original algorithm. Machine examples with comparative timing are included."

- ignore -
\bibitem[Wiki 4]\{Wiki4\}.
title = "Polynomial greatest common divisor",
url = "http://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor",

2.16 Category Theory

- ignore -
\bibitem[Baez 09]\{Baez09\} Baez, John C.; Stay, Mike
title = "Physics, Topology, Logic and Computation: A Rosetta Stone", url = "http://arxiv.org/pdf/0903.0340v3.pdf", paper = "Baez09.pdf", abstract = "

In physics, Feynman diagrams are used to reason about quantum processes. In the 1980s, it became clear that underlying these diagrams is a powerful analogy between quantum physics and topology. Namely, a linear operator behaves very much like a ''cobordism'': a manifold representing spacetime, going between two manifolds representing space. But this was just the beginning: simiar diagrams can be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of interest in quantum cryptography and quantum computation, it became clear that there is an extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of 'closed symmetric monodial category', . We assume no prior knowledge of category theory, proof theory or computer science."

- ignore -

```
\bibitem[Meijer 91]{Meij91} Meijer, Erik; Fokkinga, Maarten; Paterson, Ross
    title = "Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire",
    url = "http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf",
    paper = "Meij91.pdf",
    abstract = "
        We develop a calculus for lazy functional programming based on
        recursion operators associated with data type definitions. For these
        operators we derive various algebraic laws that are useful in deriving
        and manipulating programs. We shall show that all example functions in
        Bird and Wadler's ''Introduction to Functional Programming'' can be
        expressed using these operators."
```

 — ignore -
 \bibitem[Youssef 04]\{You04\} Youssef, Saul
title $=$ "Prospects for Category Theory in Aldor",
year = "2004",
paper $=$ "You04.pdf",
abstract = "
Ways of encorporating category theory constructions and results into
the Aldor language are discussed. The main features of Aldor which
make this possible are identified, examples of categorical
constructions are provided and a suggestion is made for a foundation
for rigorous results."

2.17 Proving Axiom Correct

- ignore -
\bibitem[Adams 99]\{Adam99\} Adams, A.A.; Gottlieben, H.; Linton, S.A.; Martin, U.
title $=$ "Automated theorem proving in support of computer algebra:
symbolic definite integration as a case study",
paper = "Adam99.pdf",
abstract = "
We assess the current state of research in the application of computer
aided formal reasoning to computer algebra, and argue that embedded verification support allows users to enjoy its benefits without wrestling with technicalities. We illustrate this claim by considering symbolic definite integration, and present a verifiable symbolic definite integral table look up: a system which matches a query comprising a definite integral with parameters and side conditions, against an entry in a verifiable table and uses a call to a library of lemmas about the reals in the theorem prover PVS to aid in the transformation of the table entry into an answer. We present the full model of such a system as well as a description of our prototype implementation showing the efficacy of such a system: for example, the prototype is able to obtain correct answers in cases where computer algebra systems [CAS] do not. We extend upon Fateman's web-based table by including parametric limits of integration and queries with side conditions."
— ignore -
\bibitem[Adams 01]\{Adam01\} Adams, Andrew; Dunstan, Martin; Gottliebsen, Hanne;
Kelsey, Tom; Martin, Ursula; Owre, Sam
title $=$ "Computer Algebra Meets Automated Theorem Proving:
Integrating Maple and PVS",
url = "http://www.csl.sri.com/~owre/papers/tphols01/tphols01.pdf",
paper = "Adam01.pdf",
abstract = "
We describe an interface between version 6 of the Maple computer algebra system with the PVS automated theorem prover. The interface is designed to allow Maple users access to the robust and checkable proof environment of PVS. We also extend this environment by the provision of a library of proof strategies for use in real analysis. We demonstrate examples using the interface and the real analysis library. These examples provide proofs which are both illustrative and applicable to genuine symbolic computation problems."

- axiom.bib -

```
@article{Bres93,
    author = "Bressoud, David",
    title = "Review of The problems of mathematics",
    journal = "Math. Intell.",
    volume = "15",
    number = "4",
```

```
    year = "1993",
    pages = "71-73"
}
```

- axiom.bib -

```
@article{Bulo04,
    author = "Medina-Bulo, I. and Palomo-Lozano, F. and Alonso-Jim\'enez, J.A.
            and Ruiz-Reina, J.L.",
    title = "Verified Computer Algebra in ACL2",
    journal = "ASIC 2004, LNAI 3249",
    year = "2004",
    pages = "171-184",
    paper = "Bulo04.pdf",
    abstract = "In this paper, we present the formal verification of a
        Common Lisp implementation of Buchberger's algorithm for computing
        Groebner bases of polynomial ideals. This work is carried out in the
        ACL2 system and shows how verified Computer Algebra can be achieved
        in an executable logic."
}
```

— axiom.bib -

```
@book{Chli15,
    author = "Chlipala, Adam",
    title = "Certified Programming with Dependent Types",
    year = "2015",
    url = "http://adam.chlipala.net/cpdt/cpdt.pdf",
    publisher = "MIT Press",
    isbn = "9780262026659",
    paper = "Chli15.pdf"
}
```

 — axiom.bib -
 @article\{Mahb06,
author = "Mahboubi, Assia",

```
    title = "Proving Formally the Implementation of an Efficient gcd
                Algorithm for Polynomials",
    journal = "Lecture Notes in Computer Science",
    volume = "4130",
    year = "2006",
    pages = "438-452",
    paper = "Mahb06.pdf",
    abstract = "
    We describe here a formal proof in the Coq system of the structure
    theorem for subresultants which allows to prove formally the
    correctness of our implementation of the subresultants algorithm.
    Up to our knowledge it is the first mechanized proof of this result."
}
```


— axiom.bib -

```
@misc{Pier15,
    author = "Pierce, Benjamin C. and Casinghino, Chris and Gaboardi, Marco and
        Greenberg, Michael and Hritcu, Catalin and Sjoberg, Vilhelm and
        Yorgey, Brent",
    title = "Software Foundations",
    year = "2015",
    file = "Pier15.tgz",
    abstract =
        "This electronic book is a course on Software Foundations, the
        mathematical underpinnings of reliable software. Topics include basic
        concepts of logic, computer-assisted theorem proving, the Coq proof
        assistant, functional programming, operational semantics, Hoare logic,
        and static type systems. The exposition is intended for a broad range
        of readers, from advanced undergraduates to PhD students and
        researchers. No specific background in logic or programming languages
        is assumed, though a degree of mathematical maturity will be helpful.
    The principal novelty of the course is that it is one hundred per cent
    formalized and machine-checked: the entire text is literally a script
    for Coq. It is intended to be read alongside an interactive session
    with Coq. All the details in the text are fully formalized in Coq, and
    the exercises are designed to be worked using Coq.
    The files are organized into a sequence of core chapters, covering
    about one semester's worth of material and organized into a coherent
    linear narrative, plus a number of appendices covering additional
    topics. All the core chapters are suitable for both upper-level
    undergraduate and graduate students."
```

- axiom.bib -

```
@article{Ther01,
    author = "Th\'ery, Laurent",
    title = "A Machine-Checked Implementation of Buchberger's Algorithm",
    journal = "Journal of Automated Reasoning",
    volume = "26",
    year = "2001",
    pages = "107-137",
    paper = "Ther01.pdf",
    abstract = "We present an implementation of Buchberger's algorithm that
        has been proved correct within the proof assistant Coq. The
        implementation contains the basic algorithm plus two standard
        optimizations."
```

\}
- ignore -
\bibitem[Ballarin 99]\{Ball99\} Ballarin, Clemens; Paulson, Lawrence C.
title = "A Pragmatic Approach to Extending Provers by Computer Algebra --
with Applications to Coding Theory",
url = "http://www.cl.cam.ac.uk/~lp15/papers/Isabelle/coding.pdf",
paper = "Ball99.pdf",
abstract = "
The use of computer algebra is usually considered beneficial for
mechanised reasoning in mathematical domains. We present a case study,
in the application domain of coding theory, that supports this claim:
the mechanised proofs depend on non-trivial algorithms from computer
algebra and increase the reasoning power of the theorem prover.
The unsoundness of computer algebra systems is a major problem in
interfacing them to theorem provers. Our approach to obtaining a sound
overall system is not blanket distrust but based on the distinction
between algorithms we call sound and \{\sl ad hoc\} respectively. This
distinction is blurred in most computer algebra systems. Our
experimental interface therefore uses a computer algebra library. It
is based on formal specifications for the algorithms, and links the
computer algebra library Sumit to the prover Isabelle.
We give details of the interface, the use of the computer algebra
system on the tactic-level of Isabelle and its integration into proof
procedures."

- ignore -
\bibitem[Bertot 04]\{Bert04\} Bertot, Yves; Cast\'eran, Pierre title = "Interactive Theorem Proving and Program Development", isbn = "3-540-20854-2", abstract = "

Coq is an interactive proof assistant for the development of mathematical theories and formally certified software. It is based on a theory called the calculus of inductive constructions, a variant of type theory.

This book provides a pragmatic introduction to the development of proofs and certified programs using Coq. With its large collection of examples and exercies it is an invaluable tool for researchers, students, and engineers interested in formal methods and the development of zero-fault software."
— ignore -
\bibitem[Boulme 00]\{BHR00\} Boulm\'e, S.; Hardin, T.; Rioboo, R. title = "Polymorphic Data Types, Objects, Modules and Functors,: is it too much?",
paper $=$ "BHROO.pdf",
abstract = "
Abstraction is a powerful tool for developers and it is offered by numerous features such as polymorphism, classes, modules, and functors, $\$ \backslash$ ldots $\$$ A working programmer may be confused by this abundance. We develop a computer algebra library which is being certificed. Reporting this experience made with a language (Ocaml) offering all these features, we argue that the are all needed together. We compare several ways of using classes to represent algebraic concepts, trying to follow as close as possible mathematical specification. Thenwe show how to combine classes and modules to produce code having very strong typing properties. Currently, this library is made of one hundred units of functional code and behaves faster than analogous ones such as Axiom."

- ignore -

```
\bibitem[Boulme 01]{BHHMRO1}
Boulm\'e, S.; Hardin, T.; Hirschkoff, D.; M\'enissier-Morain, V.; Rioboo, R.
    title = "On the way to certify Computer Algebra Systems",
    year = "2001",
Calculemus-2001
    paper = "BHHMR01.pdf",
    abstract = "
        The FOC project aims at supporting, within a coherent software system,
        the entire process of mathematical computation, starting with proved
        theories, ending with certified implementations of algorithms. In this
        paper, we explain our design requirements for the implementation,
        using polynomials as a running example. Indeed, proving correctness of
        implementations depends heavily on the way this design allows
        mathematical properties to be truly handled at the programming level.
        The FOC project, started at the fall of 1997, is aimed to build a
        programming environment for the development of certified symbolic
        computation. The working languages are Coq and Ocaml. In this paper,
        we present first the motivations of the project. We then explain why
        and how our concern for proving properties of programs has led us to
        certain implementation choices in Ocaml. This way, the sources express
        exactly the mathematical dependencies between different structures.
        This may ease the achievement of proofs."
```

 - ignore -
 \bibitem[Daly 10]\{Daly10\} Daly, Timothy
title = "Intel Instruction Semantics Generator",
url = "http://daly.axiom-developer.org/TimothyDaly_files/publications/sei/intel/intel.pdf",
paper = "Daly10.pdf",
abstract = "
Given an Intel x86 binary, extract the semantics of the instruction
stream as Conditional Concurrent Assignments (CCAs). These CCAs
represent the semantics of each individual instruction. They can be
composed to represent higher level semantics."
- ignore -
\bibitem[Danielsson 06] \{Dani06\} Danielsson, Nils Anders; Hughes, John;

```
Jansson, Patrik; Gibbons, Jeremy
    title = "Fast and Loose Reasoning is Morally Correct",
    year = "2005",
ACM POPL'06 January 2006, Charleston, South Carolina, USA
    paper = "Dani06.pdf",
    abstract = "
        Functional programmers often reason about programs as if they were
        written in a total language, expecting the results to carry over to
        non-toal (partial) languages. We justify such reasoning.
        Two languages are defined, one total and one partial, with identical
        syntax. The semantics of the partial language includes partial and
        infinite values, and all types are lifted, including the function
        spaces. A partial equivalence relation (PER) is then defined, the
        domain of which is the total subset of the partial language. For types
        not containing function spaces the PER relates equal values, and
        functions are related if they map related values to related values.
        It is proved that if two closed terms have the same semantics in the
        total language, then they have related semantics in the partial
        language. It is also shown that the PER gives rise to a bicartesian
        closed category which can be used to reason about values in the domain
        of the relation."
```

 — ignore -
 \bibitem[Davenport 12] \{Davenp12\} Davenport, James H.; Bradford, Russell;
England, Matthew; Wilson, David
title = "Program Verification in the presence of complex numbers,
functions with branch cuts etc.",
url = "http://arxiv.org/pdf/1212.5417.pdf",
paper = "Davenp12.pdf",
abstract = "
In considering the reliability of numerical programs, it is normal to
''limit our study to the semantics dealing with numerical precision''.
On the other hand, there is a great deal of work on the reliability of
programs that essentially ignores the numerics. The thesis of this
paper is that there is a class of problems that fall between these
two, which could be described as ''does the low-level arithmetic
implement the high-level mathematics''. Many of these problems arise
because mathematics, particularly the mathematics of the complex
numbers, is more difficult than expected: for example the complex
function log is not continuous, writing down a program to compute an
inverse function is more complicated than just solving an equation,
and many algebraic simplification rules are not universally valid.

The good news is that these problems are \{\sl theoretically\} capable of being solved, and are \{\sl practically\} close to being solved, but not yet solved, in several real-world examples. However, there is still a long way to go before implementations match the theoretical possibilities."

- ignore -
\bibitem[Dolzmann 97] \{Dolz97\} Dolzmann, Andreas; Sturm, Thomas title = "Guarded Expressions in Practice", url = "http://redlog.dolzmann.de/papers/pdf/MIP-9702.pdf", paper = "Dolz97.pdf", abstract = "

Computer algebra systems typically drop some degenerate cases when evaluating expressions, e.g. $\$ x / x \$$ becomes 1 dropping the case $\$ \mathrm{x}=0 \$$. We claim that it is feasible in practice to compute also the degenerate cases yielding \{\sl guarded expressions\}. We work over real closed fields but our ideas about handling guarded expressions can be easily transferred to other situations. Using formulas as guards provides a powerful tool for heuristically reducing the combinatorial explosion of cases: equivalent, redundant, tautological, and contradictive cases can be detected by simplification and quantifier elimination. Our approach allows to simplify the expressions on the basis of simplification knowledge on the logical side. The method described in this paper is implemented in the REDUCE package GUARDIAN, which is freely available on the WWW."

- ignore -

\bibitem[Dos Reis 11]\{DR11\} Dos Reis, Gabriel; Matthews, David; Li, Yue
title = "Retargeting OpenAxiom to Poly/ML: Towards an Integrated Proof Assistants and Computer Algebra Sy Calculemus (2011) Springer url = "http://paradise.caltech.edu/~yli/paper/oa-polyml.pdf", keywords = "axiomref", paper = "DR11.pdf", abstract = "

This paper presents an ongoing effort to integrate the Axiom family of computer algebra systems with Poly/ML-based proof assistants in the same framework. A long term goal is to make a large set of efficient implementations of algebraic algorithms available to popular proof assistants, and also to bring the power of mechanized formal verification to a family of strongly typed computer algebra systems at
a modest cost. Our approach is based on retargeting the code generator of the OpenAxiom compiler to the Poly/ML abstract machine."

- ignore -

```
\bibitem[Dunstan 00a] {Dun00a} Dunstan, Martin N.
    title = "Adding Larch/Aldor Specifications to Aldor",
    paper = "Dunxx.pdf",
    abstract = "
        We describe a proposal to add Larch-style annotations to the Aldor
        programming language, based on our PhD research. The annotations
        are intended to be machine-checkable and may be used for a variety
        of purposes ranging from compiler optimizations to verification
        condition (VC) generation. In this report we highlight the options
        available and describe the changes which would need to be made to
        the compiler to make use of this technology."
```

- ignore -

```
\bibitem[Dunstan 98]{Dun98} Dunstan, Martin; Kelsey, Tom; Linton, Steve;
Martin, Ursula
    title = "Lightweight Formal Methods For Computer Algebra Systems",
    url = "http://www.cs.st-andrews.ac.uk/~tom/pub/issac98.pdf",
    paper = "Dun98.pdf",
    keywords = "axiomref",
    abstract = "
        Demonstrates the use of formal methods tools to provide a semantics
        for the type hierarchy of the Axiom computer algebra system, and a
        methodology for Aldor program analysis and verification. There are
        examples of abstract specifications of Axiom primitives."
```

 - ignore -
 \bibitem[Dunstan 99a] \{Dun99a\} Dunstan, MN
title = "Larch/Aldor - A Larch BISL for AXIOM and Aldor",
year = "1999",
PhD Thesis, 1999

```
url = "http://www.cs.st-andrews.uk/files/publications/Dun99.php",
paper = "Dun99a.pdf",
keywords = "axiomref",
abstract = "
    In this thesis we investigate the use of lightweight formal methods
    and verification conditions (VCs) to help improve the reliability of
    components constructed within a computer algebra system. We follow the
    Larch approach to formal methods and have designed a new behavioural
    interface specification language (BISL) for use with Aldor: the
    compiled extension language of Axiom and a fully-featured programming
    language in its own right. We describe our idea of lightweight formal
    methods, present a design for a lightweight verification condition
    generator and review our implementation of a prototype verification
    condition generator for Larch/Aldor."
```

 - ignore -
 \bibitem[Dunstan 00]\{Dun00\} Dunstan, Martin; Kelsey, Tom; Martin, Ursula;
Linton, Steve
title = "Formal Methods for Extensions to CAS",
FME'99, Toulouse, France, Sept 20-24, 1999, pp 1758-1777
url = "http://tom.host.cs.st-andrews.ac.uk/pub/fm99.ps",
paper $=$ "Dun00.pdf",
abstract = "
We demonstrate the use of formal methods tools to provide a semantics
for the type hierarchy of the AXIOM computer algebra system, and a
methodology for Aldor program analysis and verification. We give a
case study of abstract specifications of AXIOM primitives, and provide
an interface between these abstractions and Aldor code."
- axiom.bib -
@misc\{Hard13,
author = "Hardin, David S. and McClurg, Jedidiah R. and Davis, Jennifer A.",
title = "Creating Formally Verified Components for Layered Assurance with an LLVM to ACL2 Translator",
url = "http://www.jrmcclurg.com/papers/law_2013_paper.pdf",
paper = "Hard13.pdf",
abstract = "
This paper describes an effort to create a library of formally
verified software component models from code that have been compiled
using the Low-Level Virtual Machine (LLVM) intermediate form. The idea
is to build a translator from LLVM to the applicative subset of Common

Lisp accepted by the ACL2 theorem prover. They perform verification of the component model using ACL2's automated reasoning capabilities." \}

- axiom.bib -
@misc\{Hard14,
author $=$ "Hardin, David S. and Davis, Jennifer A. and Greve, David A. and McClurg, Jedidiah R.",
title $=$ "Development of a Translator from LLVM to ACL2",
url = "http://arxiv.org/pdf/1406.1566",
paper = "Hard14.pdf",
abstract = "
In our current work a library of formally verified software components is to be created, and assembled, using the Low-Level Virtual Machine (LLVM) intermediate form, into subsystems whose top-level assurance relies on the assurance of the individual components. We have thus undertaken a project to build a translator from LLVM to the applicative subset of Common Lisp accepted by the ACL2 theorem prover. Our translator produces executable ACL2 formal models, allowing us to both prove theorems about the translated models as well as validate those models by testing. The resulting models can be translated and certified without user intervention, even for code with loops, thanks to the use of the def::ung macro which allows us to defer the question of termination. Initial measurements of concrete execution for translated LLVM functions indicate that performance is nearly 2.4 million LLVM instructions per second on a typical laptop computer. In this paper we overview the translation process and illustrate the translator's capabilities by way of a concrete example, including both a functional correctness theorem as well as a validation test for that example."

```
}
```


- axiom.bib -

@book\{Lamp02,
author = "Lamport, Leslie",
title = "Specifying Systems",
year = "2002",
url = "http://research.microsoft.com/en-us/um/people/lamport/tla/book-02-08-08.pdf", publisher = "Addison-Wesley", isbn $=$ "0-321-14306-X",

```
    paper = "Lamp02.pdf",
}
```

— axiom.bib -

```
@misc{Lamp13,
    author = "Lamport, Leslie",
    title = "Errata to Specifying Systems",
    year = "2013",
    url = "http://research.microsoft.com/en-us/um/people/lamport/tla/errata-1.pdf",
    publisher = "Microsoft",
    paper = "Lamp13.pdf",
    abstract = "
        These are all the errors and omissions to the first printing (July
        2002) of the book {\sl Specifying Systems} reported as of 29 October
        2013. Positions in the book are indicated by page and line number,
        where the top line of a page is number 1 and the bottom line is number
        $-1$. A running head and a page number are not considered to be lines,
        but all other lines are. Please report any additional errors to the
        author, whose email address is posted on {\tt http://lamport.org}. The
        first person to report an error will be acknowledged in any revised
        edition."
}
```

 — axiom.bib -
 @misc\{Lamp14,
author = "Lamport, Leslie",
title $=$ "How to Write a $\$ 21^{\wedge}\{s t\} \$$ Century Proof",
year = "2014",
url = "http://research.microsoft.com/en-us/um/people/lamport/pubs/paper.pdf",
publisher = "Microsoft",
paper = "Lamp14.pdf",
abstract = "
A method of writing proofs is described that makes it harder to prove
things that are not true. The method, based on hierarchical
structuring, is simple and practical. The author's twenty years of
experience writing such proofs is discussed."
\}

```
            _ axiom.bib -
@misc{Lamp14a,
    author = "Lamport, Leslie",
    title = "Talk: How to Write a $21^{st}$ Century Proof",
    year = "2014",
    url =
"http://hits.mediasite.com/mediasite/Play/29d825439b3c49f088d35555426fbdf81d",
    comment = "2nd Heidelberg Laureate Forum Lecture Tuesday Sep 23, 2014"
}
```

- ignore -
\bibitem[Martin 97]\{Mart97\} Martin, U.; Shand, D.
title = "Investigating some Embedded Verification Techniques for Computer Algebra Systems", url = "http://www.risc.jku.at/conferences/Theorema/papers/shand.ps.gz",
paper = "Mart97.ps",
abstract = "
This paper reports some preliminary ideas on a collaborative project
between St. Andrews University in the UK and NAG Ltd. The project aims to use embedded verification techniques to improve the reliability and mathematical soundness of computer algebra systems. We give some history of attempts to integrate computer algebra systems and automated theorem provers and discuss possible advantages and disadvantages of these approaches. We also discuss some possible case studies."
- axiom.bib -

```
@book{Maso86,
    author = "Mason, Ian A.",
    title = "The Semantics of Destructive Lisp",
    publisher = "Center for the Study of Language and Information",
    year = "1986",
    isbn = "0-937073-06-7",
    abstract = "
        Our basic premise is that the ability to construct and modify programs
        will not improve without a new and comprehensive look at the entire
        programming process. Past theoretical research, say, in the logic of
        programs, has tended to focus on methods for reasoning about
```

individual programs; little has been done, it seems to us, to develop a sound understanding of the process of programming -- the process by which programs evolve in concept and in practice. At present, we lack the means to describe the techniques of program construction and improvement in ways that properly link verification, documentation and adaptability."
\}
— ignore -
\bibitem[Newcombe 13] \{Newc13\} Newcombe, Chris; Rath, Tim; Zhang, Fan;
Munteanu, Bogdan; Brooker, Marc; Deardeuff, Michael
title $=$ "Use of Formal Methods at Amazon Web Services", url = "http://research.microsoft.com/en-us/um/people/lamport/tla/formal-methods-amazon.pdf", abstract = "

In order to find subtle bugs in a system design, it is necessary to have a precise description of that design. There are at least two major benefits to writing a precise design; the author is forced to think more clearly, which helps eliminate ''plausible hand-waving', and tools can be applied to check for errors in the design, even while it is being written. In contrast, conventional design documents consist of prose, static diagrams, and perhaps pseudo-code in an ad hoc untestable language. Such descriptions are far from precise; they are often ambiguous, or omit critical aspects such as partial failure or the granularity of concurrency (i.e. which constructs are assumed to be atomic). At the other end of the spectrum, the final executable code is unambiguous, but contains an overwhelming amount of detail. We needed to be able to capture the essence of a design in a few hundred lines of precise description. As our designs are unavoidably complex, we need a highly-expressive language, far above the level of code, but with precise semantics. That expressivity must cover real-world concurrency and fault-tolerance. And, as we wish to build services quickly, we wanted a language that is simple to learn and apply, avoiding esoteric concepts. We also very much wanted an existing ecosystem of tools. We found what we were looking for in TLA+, a formal specification language."

- ignore -
\bibitem[Poll 99a]\{P99a\} Poll, Erik
title $=$ "The Type System of Axiom", url = "http://www.cs.ru.nl/E.Poll/talks/axiom.pdf",

```
paper = "P99a.pdf",
abstract = "
    This is a slide deck from a talk on the correspondence between
    Axiom/Aldor types and Logic."
```

- ignore -

```
\bibitem[Poll 99]{PT99} Poll, Erik; Thompson, Simon
    title = "The Type System of Aldor",
    url = "http://www.cs.kent.ac.uk/pubs/1999/874/content.ps",
    paper = "PT99.pdf",
    abstract = "
        This paper gives a formal description of -- at least a part of --
        the type system of Aldor, the extension language of the Axiom.
        In the process of doing this a critique of the design of the system
        emerges."
```

 - ignore -
 \bibitem[Poll (a)]\{PTxx\} Poll, Erik; Thompson, Simon
title = "Adding the axioms to Axiom. Toward a system of automated reasoning in Aldor",
url = "http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.1457\&rep=rep1\&type=ps",
paper = "PTxx.pdf",
keywords = "axiomref",
abstract = "
This paper examines the proposal of using the type system of Axiom to
represent a logic, and thus to use the constructions of Axiom to
handle the logic and represent proofs and propositions, in the same
way as is done in theorem provers based on type theory such as Nuprl
or Coq.
The paper shows an interesting way to decorate Axiom with pre- and
post-conditions.
The Curry-Howard correspondence used is
\begin\{verbatim\} }
PROGRAMMING LOGIC
Type Formula
Program
Proof
Product/record type (...,...) Conjunction
Sum/union type $/$ Disjunction
Function type $->$ Implication

Dependent function type	$(x: A)->B(x)$	Universal quantifier
Dependent product type	$(x: A, B(x))$	Existential quantifier
Empty type	Exit	Contradictory proposition
One element type	Triv	True proposition
lend\{verbatim\}"		

\qquad

- ignore -

```
\bibitem[Poll 00]{PT00} Poll, Erik; Thompson, Simon
    title = "Integrating Computer Algebra and Reasoning through the Type System of Aldor",
    paper = "PT00.pdf",
    keywords = "axiomref",
    abstract = "
        A number of combinations of reasoning and computer algebra systems
        have been proposed; in this paper we describe another, namely a way to
        incorporate a logic in the computer algebra system Axiom. We examine
        the type system of Aldor -- the Axiom Library Compiler -- and show
        that with some modifications we can use the dependent types of the
        system to model a logic, under the Curry-Howeard isomorphism. We give
        a number of example applications of the logi we construct and explain
        a prototype implementation of a modified type-checking system written
        in Haskell."
```

 — axiom.bib -
    ```
@misc{Robe15,
    author = "Roberts, Siobhan",
    title = "In Mathematics, Mistakes Aren't What They Used To Be",
    year = 2015,
    url = "http://nautil.us/issue/24/error/In-mathematics-mistakes-arent-what-they-used-to-be"
}
```


2.18 Interval Arithmetic

```
\bibitem[Boehm 86]{Boe86} Boehm, Hans-J.; Cartwright, Robert; Riggle, Mark;
O'Donnell, Michael J.
    title = "Exact Real Arithmetic: A Case Study in Higher Order Programming",
    url = "http://dev.acm.org/pubs/citations/proceedings/lfp/319838/p162-boehm",
    paper = "Boe86.pdf",
```

 - ignore -
 \bibitem[Briggs 04]\{Bri04\} Briggs, Keith
title = "Exact real arithmetic",
url = "http://keithbriggs.info/documents/xr-kent-talk-pp.pdf",
paper $=$ "Bri04.pdf",
\qquad

- ignore -
\bibitem[Fateman 94]\{Fat94\} Fateman, Richard J.; Yan, Tak W.
title $=$ "Computation with the Extended Rational Numbers and an Application to Interval Arithme
url = "http://www.cs.berkeley.edu/~fateman/papers/extrat.pdf",
paper = "Fat94.pdf",
abstract = "
Programming languages such as Common Lisp, and virtually every
computer algebra system (CAS), support exact arbitrary-precision
integer arithmetic as well as exect rational number computation.
Several CAS include interval arithmetic directly, but not in the
extended form indicated here. We explain why changes to the usual
rational number system to include infinity and ' $n o t-a-n u m b e r '$ ' may be
useful, especially to support robust interval computation. We describe
techniques for implementing these changes."
- axiom.bib -

```
@incollection{Lamb06,
    author = "Lambov, Branimir",
    title = "Interval Arithmetic Using SSE-2",
    booktitle = "Lecture Notes in Computer Science",
    publisher = "Springer-Verlag",
    year = "2006",
```

```
    isbn = "978-3-540-85520-0",
    pages = "102-113"
}
```


2.19 Numerics

- ignore -

\bibitem[Atkinson 09]\{Atk09\} Atkinson, Kendall; Han, Welmin; Stewear, David title = "Numerical Solution of Ordinary Differential Equations", url = "http://homepage.math.uiowa.edu/~atkinson/papers/NAODE_Book.pdf", paper = "Atk09.pdf",
abstract = "
This book is an expanded version of supplementary notes that we used for a course on ordinary differential equations for upper-division undergraduate students and beginning graduate students in mathematics, engineering, and sciences. The book introduces the numerical analysis of differential equations, describing the mathematical background for understanding numerical methods and giving information on what to expect when using them. As a reason for studying numerical methods as a part of a more general course on differential equations, many of the basic ideas of the numerical analysis of differential equations are tied closely to theoretical behavior associated with the problem being solved. For example, the criteria for the stability of a numerical method is closely connected to the stability of the differential equation problem being solved."

- ignore -
\bibitem[Crank 96]\{Cran96\} Crank, J.; Nicolson, P.
title = "A practical method for numerical evaluations of solutions of partial differential equations of h
Advances in Computational Mathematics Vol 6 pp207-226 (1996)
url = "http://www.acms.arizona.edu/FemtoTheory/MK_personal/opti547/literature/CNMethod-original.pdf", paper = "Cran96.pdf",

```
\bibitem[Lef\'evre 06]{Lef06} Lef\'evre, Vincent; Stehl\'e, Damien;
Zimmermann, Paul
    title = "Worst Cases for the Exponential Function in the IEEE-754r decimal64 Format",
in Lecture Notes in Computer Science, Springer ISBN 978-3-540-85520-0
(2006) pp114-125
    abstract = "
        We searched for the worst cases for correct rounding of the
        exponential function in the IEEE 754r decimal64 format, and computed
        all the bad cases whose distance from a breakpoint (for all rounding
        modes) is less than $10^{-15}$ ulp, and we give the worst ones. In
        particular, the worst case for
        $\vert{}x\vert{} \ge 3 x 10^{-11}$ is
        \[
        exp(9.407822313572878x10^{-2} =
        1.09864568206633850000000000000000278\ldots
        \]
        This work can be extended to other elementary functions in the decimal64
        format and allows the design of reasonably fast routines that will
        evaluate these functions with correct rounding, at least in some
        situations."
```

 - axiom.bib -
 @book\{Hamm62,
author = "Hamming, R W.",
title = "Numerical Methods for Scientists and Engineers",
publisher = "Dover",
year = "1973",
isbn $=$ "0-486-65241-6"
\}

2.20 Advanced Documentation

- ignore -
\bibitem [Bostock 14]\{Bos14\} Bostock, Mike
title = "Visualizing Algorithms",
url = "http://bost.ocks.org/mike/algorithms",
abstract = "
This website hosts various ways of visualizing algorithms. The hope is
that these kind of techniques can be applied to Axiom."
— axiom.bib -
@misc\{Kama15,
author = "Kamareddine, Fairouz and Wells, Joe and Zengler, Christoph and Barendregt, Henk",
title = "Computerising Mathematical Text",
year = "2015",
abstract $=$
"Mathematical texts can be computerised in many ways that capture differing amounts of the mathematical meaning. At one end, there is document imaging, which captures the arrangement of black marks on paper, while at the other end there are proof assistants (e.g. Mizar, Isabelle, Coq, etc.), which capture the full mathematical meaning and have proofs expressed in a formal foundation of mathematics. In between, there are computer typesetting systems (e.g. Latex and Presentation MathML) and semantically oriented systems (e.g. Content MathML, OpenMath, OMDoc, etc.). In this paper we advocate a style of computerisation of mathematical texts which is flexible enough to connect the diferent approaches to computerisation, which allows various degrees of formalsation, and which is compatible with different logical frameworks (e.g. set theory, category theory, type theory, etc.) and proof systems. The basic idea is to allow a man-machine collaboration which weaves human input with machine computation at every step in the way. We propose that the huge step from informal mathematics to fully formalised mathematics be divided into smaller steps, each of which is a fully developed method in which human input is minimal."
\}
- ignore -
\bibitem[Leeuwen] \{Leexx\} \{van Leeuwen\}, Andr\'e M.A.
title $=$ "Representation of mathematical object in interactive books", paper $=$ "Leexx.pdf",
abstract = "
We present a model for the representation of mathematical objects in structured electronic documents, in a way that allows for interaction with applications such as computer algebra systems and proof checkers. Using a representation that reflects only the intrinsic information of
an object, and storing application-dependent information in so-called $\{\backslash s l$ application descriptions\}, it is shown how the translation from the internal to an external representation and $\{\backslash$ sl vice versa\} can be achieved. Hereby a formalisation of the concept of \{\sl context\} is introduced. The proposed scheme allows for a high degree of application integration, e.g., parallel evaluation of subexpressions (by different computer algebra systems), or a proof checker using a computer algebra system to verify an equation involving a symbolic computation."
- ignore -
\bibitem[Soiffer 91]\{Soif91\} Soiffer, Neil Morrell
title = "The Design of a User Interface for Computer Algebra Systems", url = "http://www.eecs.berkeley.edu/Pubs/TechRpts/1991/CSD-91-626.pdf", paper = "Soif91.pdf", abstract = "

This thesis discusses the design and implementation of natural user interfaces for Computer Algebra Systems. Such an interface must not only display expressions generated by the Computer Algebra System in standard mathematical notation, but must also allow easy manipulation and entry of expressions in that notation. The user interface should also assist in understanding of large expressions that are generated by Computer Algebra Systems and should be able to accommodate new notational forms."

- ignore -
\bibitem[Victor 11]\{Vict11\} Victor, Bret title = "Up and Down the Ladder of Abstraction", url = "http://worrydream.com/LadderOfAbstraction", abstract = "

This interactive essay presents the ladder of abstraction, a technique for thinking explicitly about these levels, so a designer can move among them consciously and confidently. "

```
\bibitem[Victor 12]{Vict12} Victor, Bret
    title = "Inventing on Principle",
    url = "http://www.youtube.com/watch?v=PUv66718DII",
    abstract = "
        This video raises the level of discussion about human-computer
        interaction from a technical question to a question of effectively
        capturing ideas. In particular, this applies well to Axiom's focus on
        literate programming."
```


2.21 Differential Equations

— axiom.bib -
@InProceedings\{Kalt84, author = "Kaltofen, E.", title $=$ "A Note on the \{Risch\} Differential Equation", booktitle = "Proc. EUROSAM '84", pages = "359--366", crossref = "EUROSAM84", year = "1984", url = "http://www.math.ncsu.edu/~kaltofen/bibliography/84/Ka84_risch.ps.gz", paper $=$ "Kalt84.ps",
\}

- ignore -

```
\bibitem[Abramov 95]{Abra95} Abramov, Sergei A.; Bronstein, Manuel;
Petkovsek, Marko
    title = "On Polynomial Solutions of Linear Operator Equations",
    url =
        "http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html",
    paper = "Abra95.pdf",
```

\qquad

- ignore -
\bibitem[Abramov 01]\{Abra01\} Abramov, Sergei; Bronstein, Manuel

```
title = "On Solutions of Linear Functional Systems",
url =
    "http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html",
paper = "Abra01.pdf",
abstract = "
    We describe a new direct algorithm for transforming a linear system of
    recurrences into an equivalent one with nonsingular leading or
    trailing matrix. Our algorithm, which is an improvement to the EG
    elimination method, uses only elementary linear algebra operations
    (ranks, kernels, and determinants) to produce an equation satisfied by
    the degress of the solutions with finite support. As a consequence, we
    can boudn and compute the polynomial and rational solutions of very
    general linear functional systems such as systems of differential or
    ($q$)-difference equations."
```

- ignore -
\bibitem[Bronstein 96b] \{Bro96b\} Bronstein, Manuel title = "On the Factorization of Linear Ordinary Differential Operators", Mathematics and Computers in Simulation 42 pp 387-389 (1996) paper = "Bro96b.pdf", abstract = "

After reviewing the arithmetic of linear ordinary differential operators, we describe the current status of the factorisation algorithm, specially with respect to factoring over non-algebraically closed constant fields. We also describe recent results from Singer and Ulmer that reduce determining the differential Galois group of an operator to factoring."

- ignore -
\bibitem[Bronstein 96a] \{Bro96a\} Bronstein, Manuel; Petkovsek, Marko title = "An introduction to pseudo-linear algebra",
Theoretical Computer Science V157 pp3-33 (1966)
url =
"http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html", paper = "Bro96a.pdf", abstract = "
Pseudo-linear algebra is the study of common properties of linear differential and difference operators. We introduce in this paper its basic objects (pseudo-derivations, skew polynomials, and pseudo-linear operators) and describe several recent algorithms on them, which, when
applied in the differential and difference cases, yield algorithms for uncoupling and solving systems of linear differential and difference equations in closed form."
- ignore -

```
\bibitem[Bronstein xb]{Broxb} Bronstein, Manuel
    title = "Computer Algebra Algorithms for Linear Ordinary Differential and Difference equations",
    url = "http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/ecm3.pdf",
    paper = "Broxb.pdf",
    abstract = "
        Galois theory has now produced algorithms for solving linear ordinary
        differential and difference equations in closed form. In addition,
        recent algorithmic advances have made those algorithms effective and
        implementable in computer algebra systems. After introducing the
        relevant parts of the theory, we describe the latest algorithms for
        solving such equations."
```

 — ignore -
 \bibitem[Bronstein 94]\{Bro94\} Bronstein, Manuel
title = "An improved algorithm for factoring linear ordinary differential operators",
url =
"http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html",
abstract = "
We describe an efficient algorithm for computing the associated
equations appearing in the Beke-Schlesinger factorisation method for
linear ordinary differential operators. This algorithm, which is based
on elementary operations with sets of integers, can be easily
implemented for operators of any order, produces several possible
associated equations, of which only the simplest can be selected for
solving, and often avoids the degenerate case, where the order of the
associated equation is less than in the generic case. We conclude with
some fast heuristics that can produce some factorizations while using
only linear computations."

```
\bibitem[Bronstein 90]{Bro90} Bronstein, Manuel
    title = "On Solutions of Linear Ordinary Differential Equations in their Coefficient Field",
    url =
        "http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html",
    paper = "Bro90.pdf",
    abstract = "
            We describe a rational algorithm for finding the denominator of any
            solution of a linear ordinary differential equation in its coefficient
            field. As a consequence, there is now a rational algorithm for finding
            all such solutions when the coefficients can be built up from the
            rational functions by finitely many algebraic and primitive
            adjunctions. This also eliminates one of the computational bottlenecks
            in algorithms that either factor or search for Liouvillian solutions
            of such equations with Liouvillian coefficients."
```

 - ignore -
 \bibitem[Bronstein 96]\{Bro96\} Bronstein, Manuel
title =
"\$\sum^\{IT\}\$ -- A strongly-typed embeddable computer algebra library",
url =
"http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html",
paper $=$ "Bro96.pdf",
abstract = "
We describe the new computer algebra library $\$ \backslash$ sum $\{I T\} \$$ and its
underlying design. The development of $\$ \backslash$ sum $\{I T\} \$$ is motivated by the
need to provide highly efficient implementations of key algorithms for
linear ordinary differential and (\$q\$)-difference equations to
scientific programmers and to computer algebra users, regardless of
the programming language or interactive system they use. As such,
\$\sum^\{IT\}\$ is not a computer algebra system per se, but a library (or
substrate) which is designed to be '(plugged') with minimal efforts
into different types of client applications."
- ignore -
\bibitem[Bronstein 99a]\{Bro99a\} Bronstein, Manuel
title $=$ "Solving linear ordinary differential equations over $\$ C\left(x, e^{\wedge}\{\backslash i n t\{f(x) d x\}\}\right) \$$,
url =
"http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html",
paper = "Bro99a.pdf",
abstract = "

We describe a new algorithm for computing the solutions in $\backslash\left[F=C\left(x, e^{\wedge}\{\backslash i n t\{f(x) d x\}\}\right) \backslash\right]$ of linear ordinary differential equations with coefficients in $\$$ F\$. Compared to the general algorithm, our algorithm avoids the computation of exponential solutions of equations with coefficients in $\$ C(x) \$$, as well as the solving of linear differential systems over $\$ C(x) \$$. Our method is effective and has been implemented."
— ignore -
\bibitem[Bronstein 00]\{Bro00\} Bronstein, Manuel
title $=$ "On Solutions of Linear Ordinary Differential Equations in their Coefficient Field", url = "http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html", paper = "Bro00.pdf",
abstract = "
We extend the notion of monomial extensions of differential fields, i.e. simple transcendental extensions in which the polynomials are closed under differentiation, to difference fields. The structure of such extensions provides an algebraic framework for solving generalized linear difference equations with coefficients in such fields. We then describe algorithms for finding the denominator of any solution of those equations in an important subclass of monomial extensions that includes transcendental indefinite sums and products. This reduces the general problem of finding the solutions of such equations in their coefficient fields to bounding their degrees. In the base case, this yields in particular a new algorithm for computing the rational solutions of $\$ q \$$-difference equations with polynomial coefficients."

- ignore -

\bibitem[Bronstein 02] \{Bro02\} Bronstein, Manuel; Lafaille, S\’ebastien title $=$ "Solutions of linear ordinary differential equations in terms of special functions", url =
"http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/issac2002.pdf", paper = "Bro02.pdf",
abstract = "
We describe a new algorithm for computing special function solutions of the form $\$ y(x)=m(x) F(\backslash e t a(x)) \$$ of second order linear ordinary differential equations, where $\$ \mathrm{~m}(\mathrm{x}) \$$ is an arbitrary Liouvillian function, $\$ \backslash$ eta $(x) \$$ is an arbitrary rational function, and $\$ F \$$

Abstract

satisfies a given second order linear ordinary differential equations. Our algorithm, which is base on finding an appropriate point transformation between the equation defining $\$ F \$$ and the one to solve, is able to find all rational transformations for a large class of functions $\$ \mathrm{~F} \$$, in particular (but not only) the \$_0F_1\$ and \$_1F_1\$ special functions of mathematical physics, such as Airy, Bessel, Kummer and Whittaker functions. It is also able to identify the values of the parameters entering those special functions, and can be generalized to equations of higher order."

- ignore -

```
\bibitem[Bronstein 03]{Bro03} Bronstein, Manuel; Trager, Barry M.
    title = "A Reduction for Regular Differential Systems",
    url =
        "http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mega2003.pdf",
    paper = "Bro03.pdf",
    abstract = "
        We propose a definition of regularity of a linear differential system
        with coefficients in a monomial extension of a differential field, as
        well as a global and truly rational (i.e. factorisation-free)
        iteration that transforms a system with regular finite singularites
        into an equivalent one with simple finite poles. We then apply our
        iteration to systems satisfied by bases of algebraic function fields,
        obtaining algorithms for computing the number of irreducible
        components and the genus of algebraic curves."
```

 - ignore -
 \bibitem[Bronstein 03a] \{Bro03a\} Bronstein, Manuel; Sol\’e, Patrick
title = "Linear recurrences with polynomial coefficients",
url =
"http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html",
paper = "Bro03a.pdf",
abstract = "
We relate sequences generated by recurrences with polynomial
coefficients to interleaving and multiplexing of sequences generated
by recurrences with constant coefficients. In the special case of
finite fields, we show that such sequences are periodic and provide
linear complexity estimates for all three constructions."

- ignore -
\bibitem[Bronstein 05] \{Bro05\} Bronstein, Manuel; Li, Ziming; Wu, Min title = "Picard-Vessiot Extensions for Linear Functional Systems", url = "http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/issac2005.pdf", paper = "Bro05.pdf",
abstract = "
Picard-Vessiot extensions for ordinary differential and difference equations are well known and are at the core of the associated Galois theories. In this paper, we construct fundamental matrices and Picard-Vessiot extensions for systems of linear partial functional equations having finite linear dimension. We then use those extensions to show that all the solutions of a factor of such a system can be completed to solutions of the original system."
- ignore -
\bibitem[Davenport 86] \{Dav86\} Davenport, J.H.
title = "The Risch Differential Equation Problem", year = "1986",
SIAM J. COMPUT. Vol 15, No. 4
paper = "Dav86.pdf",
abstract = "
We propose a new algorithm, similar to Hermite's method for the integration of rational functions, for the resolution of Risch differential equations in closed form, or proving that they have no resolution. By requiring more of the presentation of our differential fields (in particular that the exponentials be weakly normalized), we can avoid the introduction of arbitrary constants which have to be solved for later.

We also define a class of fields known as exponentially reduced, and show that solutions of Risch differential equations which arise from integrating in these fields satisfy the ' $n a t u r a l$ ', degree constraints in their main variables, and we conjecture (after Risch and Norman) that this is true in all variables."
\bibitem[Singer 9]\{Sing91.pdf\} Singer, Michael F. title = "Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients"
J. Symbolic Computation V11 No 3 pp251-273
year = "1991",
url = "http://www.sciencedirect.com/science/article/pii/S074771710880048X", paper = "Sing91.pdf",
abstract = "
Let $\$ \mathrm{~L}(\mathrm{y})=\mathrm{b} \$$ be a linear differential equation with coefficients in a differential field $\$ K \$$. We discuss the problem of deciding if such an equation has a non-zero solution in $\$ K \$$ and give a decision procedure in case \$K\$ is an elementary extension of the field of rational functions or is an algebraic extension of a transcendental liouvillian extension of the field of rational functions We show how one can use this result to give a procedure to find a basis for the space of solutions, liouvillian over \$K\$, of $\$ \mathrm{~L}(\mathrm{y})=0 \$$ where $\$ \mathrm{~K} \$$ is such a field and $\$ \mathrm{~L}(\mathrm{y})$ \$ has coefficients in $\$ \mathrm{~K} \$. "$

- ignore -

\bibitem[Von Mohrenschildt 94]\{Mohr94\} \{von Mohrenschildt\}, Martin title = "Symbolic Solutions of Discontinuous Differential Equations", url = "http://e-collection.library.ethz.ch/eserv/eth:39463/eth-39463-01.pdf", paper $=$ "Mohr94.pdf",
\qquad

- ignore -
\bibitem[Von Mohrenschildt 98]\{Mohr98\} von Mohrenschildt, Martin title $=$ "A Normal Form for Function Rings of Piecewise Functions",
J. Symbolic Computation (1998) Vol 26 pp607-619
url = "http://www.cas.mcmaster.ca/~mohrens/JSC.pdf",
paper = "Mohr98.pdf",
abstract = "
Computer algebra systems often have to deal with piecewise continuous functions. These are, for example, the absolute value function, signum, piecewise defined functions but also functions that are the supremum or infimum of two functions. We present a new algebraic approach to these types of problems. This paper presents a normal form for a function ring containing piecewise polynomial functions of an expression. The main result is that this normal form can be used to decide extensional equality of two piecewise functions. Also we define supremum and infimum for piecewise functions; in fact, we show that the function ring forms a lattice. Additionally, a method to solve

```
equalities and inequalities in this function ring is
presented. Finally, we give a ''user interface'' to the algebraic
representation of the piecewise functions."
```

- ignore -
\bibitem[Weber 06]\{Webe06\} Weber, Andreas
title = "Quantifier Elimination on Real Closed Fields and Differential Equations",
url =
"http://cg.cs.uni-bonn.de/personal-pages/weber/publications/pdf/WeberA/Weber2006a.pdf",
paper = "Webe06.pdf",
keywords = "survey",
abstract = "
This paper surveys some recent applications of quantifier elimination
on real closed fields in the context of differential
equations. Although polynomial vector fields give rise to solutions
involving the exponential and other transcendental functions in
general, many questions can be settled within the real closed field
without referring to the real exponential field. The technique of
quantifier elimination on real closed fields is not only of
theoretical interest, but due to recent advances on the algorithmic
side including algorithms for the simplification of quantifier-free
formulae the method has gained practical applications, e.g. in the
context of computing threshold conditions in epidemic modeling."
- ignore -
\bibitem[Ulmer 03]\{Ulm03\} Ulmer, Felix
title = "Liouvillian solutions of third order differential equations",
J. Symbolic COmputations 36 pp 855-889
year = "2003",
url = "http://www.sciencedirect.com/science/article/pii/S0747717103000658",
paper = "Ulm03.pdf",
abstract = "
The Kovacic algorithm and its improvements give explicit formulae for
the Liouvillian solutions of second order linear differential
equations. Algorithms for third order differential equations also
exist, but the tools they use are more sophisticated and the
computations more involved. In this paper we refine parts of the
algorithm to find Liouvillian solutions of third order equations. We
show that,except for four finite groups and a reduction to the second
order case, it is possible to give a formula in the imprimitve
case. We also give necessary conditions and several simplifications for the computation of the minimal polynomial for the remaining finite set of finite groups (or any known finite group) by extracting ramification information from the character table. Several examples have been constructed, illustrating the possibilities and limitations."

2.22 Expression Simplification

- ignore -

```
\bibitem[Carette 04]{Car04} Carette, Jacques
    title = "Understanding Expression Simplification",
    url = "http://www.cas.mcmaster.ca/~ carette/publications/simplification.pdf",
    paper = "Car04.pdf",
    abstract = "
        We give the first formal definition of the concept of {\sl
        simplification} for general expressions in the context of Computer
        Algebra Systems. The main mathematical tool is an adaptation of the
        theory of Minimum Description Length, which is closely related to
        various theories of complexity, such as Kolmogorov Complexity and
        Algorithmic Information Theory. In particular, we show how this theory
        can justify the use of various ''magic constants', for deciding
        between some equivalent representations of an expression, as found in
        implementations of simplification routines."
```


2.23 Integration

\qquad
@TechReport\{Kalt84b,
author = "Kaltofen, E.", title = "The Algebraic Theory of Integration", institution = "RPI",
address $=$ "Dept. Comput. Sci., Troy, New York",
year = "1984",
url =
"http://www.math.ncsu.edu/~kaltofen/bibliography/84/Ka84_integration.pdf", paper $=$ "Kalt84b.pdf",
\}

- ignore -
\bibitem[Adamchik xx]\{Adamxx\} Adamchik, Victor
title = "Definite Integration",
url = "http://www.cs.cmu.edu/~adamchik/articles/integr/mj.pdf", paper = "Adamxx.pdf",
\qquad
- ignore -
\bibitem[Adamchik 97]\{Adam97\} Adamchik, Victor
title = "A Class of Logarithmic Integrals",
url = "http://www.cs.cmu.edu/~adamchik/articles/issac/issac97.pdf",
paper = "Adam97.pdf",
abstract $="$
A class of definite integrals involving cyclotomic polynomials and
nested logarithms is considered. The results are given in terms of
derivatives of the Hurwitz Zeta function. Some special cases for which
such derivatives can be expressed in closed form are also considered."
\qquad
- ignore -
\bibitem[Avgoustis 77]\{Avgo77\} Avgoustis, Ioannis Dimitrios

title =

"Definite Integration using the Generalized Hypergeometric Functions",
url = "http://dspace.mit.edu/handle/1721.1/16269",
paper = "Avgo77.pdf",
abstract = "
A design for the definite integration of approximately fifty Special Functions is described. The Generalized Hypergeometric Functions are utilized as a basis for the representation of the members of the above set of Special Functions. Only a relatively small number of formulas that generally involve Generalized Hypergeometric Functions are utilized for the integration stage. A last and crucial stage is required for the integration process: the reduction of the Generalized Hypergeometric Function to Elementary and/or Special Functions.

The result of an early implementation which involves Laplace transforms are given and some actual examples with their corresponding timing are provided."

- ignore -
\bibitem[Baddoura 89]\{Bad89\} Baddoura, Jamil
title = "A Dilogarithmic Extension of Liouville's Theorem on Integration in Finite Terms",
url = "http://www.dtic.mil/dtic/tr/fulltext/u2/a206681.pdf",
paper = "Bad89.pdf",
abstract = "
The result obtained generalizes Liouville's Theorem by allowing, in addition to the elementary functions, dilogarithms to appear in the integral of an elementary function. The basic conclusion is that an associated function to the dilogarihm, if dilogarithms appear in the integral, appears linearly, with logarithms appearing in a non-linear way."
- ignore -
\bibitem[Baddoura 94] \{Bad94\} Baddoura, Mohamed Jamil
title = "Integration in Finite Terms with Elementary Functions and Dilogarithms",
url = "http://dspace.mit.edu/bitstream/handle/1721.1/26864/30757785.pdf", paper = "Bad94.pdf",
abstract = "
In this thesis, we report on a new theorem that generalizes Liouville's theorem on integration in finite terms. The new theorem allows dilogarithms to occur in the integral in addition to elementary functions. The proof is base on two identities for the dilogarithm, that characterize all the possible algebraic relations among dilogarithms of functions that are built up from the rational functions by taking transcendental exponentials, dilogarithms, and logarithms."
— ignore -

```
\bibitem[Baddoura 10]{Bad10} Baddoura, Jamil
    title = "A Note on Symbolic Integration with Polylogarithms",
    year = "2011",
J. Math Vol }8\mathrm{ pp229-241 (2011)
    paper = "Bad10.pdf",
    abstract = "
        We generalize partially Liouville's theorem on integration in finite
        terms to allow polylogarithms of any order to occur in the integral in
        addition to elementary functions. The result is a partial
        generalization of a theorem proved by the author for the
        dilogarithm. It is also a partial proof of a conjecture postulated by
        the author in 1994. The basic conclusion is that an associated
        function to the nth polylogarithm appears linearly with logarithms
        appearing possibly in a polynomial way with non-constant coefficients."
```

 - ignore -
 \bibitem[Bajpai 70]\{Bajp70\} Bajpai, S.D.
title $=$ "A contour integral involving legendre polynomial and Meijer's G-function",
url = "http://link.springer.com/article/10.1007/BF03049565",
paper = "Bajp70.pdf",
abstract = "
In this paper a countour integral involving Legendre polynomial and
Meijer's G-function is evaluated. the integral is of general character
and it is a generalization of results recently given by Meijer,
MacRobert and others. An integral involving regular radial Coulomb
wave function is also obtained as a particular case."
- ignore -
\bibitem[Bronstein 89]\{Bro89a\} Bronstein, M.
title = "An Algorithm for the Integration of Elementary Functions",
Lecture Notes in Computer Science Vol 378 pp491-497
year = "1989",
paper = "Bro89a.pdf",
abstract = "
Trager (1984) recently gave a new algorithm for the indefinite
integration of algebraic functions. His approach was 'rational', in
the sense that the only algebraic extension computed in the smallest
one necessary to express the answer. We outline a generalization of
this approach that allows us to integrate mixed elementary
functions. Using only rational techniques, we are able to normalize
the integrand, and to check a necessary condition for elementary
integrability."

- ignore -
\bibitem[Bronstein 90a] \{Bro90a\} Bronstein, Manuel title $=$ "Integration of Elementary Functions",
J. Symbolic Computation 9, pp117-173
year = "1990",
paper = "Bro90a.pdf",
abstract = "
We extend a recent algorithm of Trager to a decision procedure for the indefinite integration of elementary functions. We can express the integral as an elementary function or prove that it is not elementary. We show that if the problem of integration in finite terms is solvable on a given elementary function field $\$ k \$$, then it is solvable in any algebraic extension of $\$ k(\backslash t h e t a) \$$, where $\$ \backslash$ theta $\$$ is a logarithm or exponential of an element of $\$ \mathrm{k} \$$. Our proof considers an element of such an extension field to be an algebraic function of one variable over $\$ \mathrm{k}$ \$.

In his algorithm for the integration of algebraic functions, Trager describes a Hermite-type reduction to reduce the problem to an integrand with only simple finite poles on the associated Riemann surface. We generalize that technique to curves over liouvillian ground fields, and use it to simplify our integrands. Once the multipe finite poles have been removed, we use the Puiseux expansions of the integrand at infinity and a generalization of the residues to compute the integral. We also generalize a result of Rothstein that gives us a necessary condition for elementary integrability, and provide examples of its use."

- axiom.bib -

```
@article{Bron90c,
    author = "Bronstein, Manuel",
    title = "On the integration of elementary functions",
    journal = "Journal of Symbolic Computation",
    volume = "9",
    number = "2",
    pages = "117-173",
    year = "1990",
```

```
    month = "February"
}
    -
    _ ignore -
\bibitem[Bronstein 93]{REF-BS93} Bronstein, Manuel; Salvy, Bruno
    title = "Full partial fraction decomposition of rational functions",
In Bronstein [Bro93] pp157-160 ISBN 0-89791-604-2 LCCN QA76.95 I59 1993
    url = "http://www.acm.org/pubs/citations/proceedings/issac/164081/",
```

\qquad

```
- ignore -
\bibitem[Bronstein 90] \{Bro90b\} Bronstein, Manuel
title = "A Unification of Liouvillian Extensions", paper = "Bro90b.pdf", abstract = "
We generalize Liouville's theory of elementary functions to a larger class of differential extensions. Elementary, Liouvillian and trigonometric extensions are all special cases of our extensions. In the transcendental case, we show how the rational techniques of integration theory can be applied to our extensions, and we give a unified presentation which does not require separate cases for different monomials."
```

— axiom.bib -

```
@book{Bron97,
    author = "Bronstein, Manuel",
    title = "Symbolic Integration I--Transcendental Functions",
    publisher = "Springer, Heidelberg",
    year = "1997",
    isbn = "3-540-21493-3",
    url = "http://evil-wire.org/arrrXiv/Mathematics/Bronstein,_Symbolic_Integration_I,1997.pdf",
    paper = "Bron97.pdf",
}
```


- ignore -

```
\bibitem[Bronstein 05a]{Bro05a} Bronstein, Manuel
    title = "The Poor Man's Integrator, a parallel integration heuristic",
    url = "http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/pmint.txt",
    url2 = "http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/examples",
    paper = "Bro05a.txt",
```

— axiom.bib -

```
@article{Bron06,
    author = "Bronstein, M.",
    title = "Parallel integration",
    journal = "Programming and Computer Software",
    year = "2006",
    issn = "0361-7688",
    volume = "32",
    number = "1",
    doi = "10.1134/S0361768806010075",
    url = "http://dx.doi.org/10.1134/S0361768806010075",
    publisher = "Nauka/Interperiodica",
    pages = "59-60",
    paper = "Bron06.pdf",
    abstract = "
        Parallel integration is an alternative method for symbolic
        integration. While also based on Liouville's theorem, it handles all
        the generators of the differential field containing the integrand ''in
        parallel'', i.e. all at once rather than considering only the topmost
        one in a recursive fasion. Although it still contains heuristic
        aspects, its ease of implementation, speed, high rate of success, and
        ability to integrate functions that cannot be handled by the Risch
        algorithm make it an attractive alternative."
}
```

— axiom.bib -

```
@article{Bron07,
    author = "Bronstein, Manuel",
    title = "Structure theorems for parallel integration",
    journal = "Journal of Symbolic Computation",
```

```
    volume = "42",
    number = "7",
    pages = "757-769",
    year = "2007",
    month = "July",
    paper = "Bron07.pdf",
    abstract = "
    We introduce structure theorems that refine Liouville's Theorem on
    integration in closed form for general derivations on multivariate
    rational function fields. By predicting the arguments of the new
    logarithms that an appear in integrals, as well as the denominator of
    the rational part, those theorems provide theoretical backing for the
    Risch-Norman integration method. They also generalize its applicability
    to non-monomial extensions, for example the Lambert W function."
}
                    - ignore -
\bibitem[Charlwood 07]{Charl07} Charlwood, Kevin
    title = "Integration on Computer Algebra Systems",
The Electronic J of Math. and Tech. Vol 2, No 3, ISSN 1933-2823
    url = "http://12000.org/my_notes/ten_hard_integrals/paper.pdf",
    paper = "Charl07.pdf",
    abstract = "
        In this article, we consider ten indefinite integrals and the ability
        of three computer algebra systems (CAS) to evaluate them in
        closed-form, appealing only to the class of real, elementary
        functions. Although these systems have been widely available for many
        years and have undergone major enhancements in new versions, it is
        interesting to note that there are still indefinite integrals that
        escape the capacity of these systems to provide antiderivatves. When
        this occurs, we consider what a user may do to find a solution with
        the aid of a CAS."
```

 - ignore -
 \bibitem[Charlwood 08] Charl08\} Charlwood, Kevin
title = "Symbolic Integration Problems",
url = "http://www.apmaths.uwo.ca/~arich/IndependentTestResults/CharlwoodIntegrationProblems.pdf",
paper $=$ "Charl08.pdf",
abstract = "
A list of the 50 example integration problems from Kevin Charlwood's 2008
article ''Integration on Computer Algebra Systems''. Each integral along with its optimal antiderivative (that is, the best antiderivative found so far) is shown."

- ignore -
\bibitem[Cherry 84]\{Che84\} Cherry, G.W.
title = "Integration in Finite Terms with Special Functions: The Error Function",
J. Symbolic Computation (1985) Vol 1 pp283-302
paper = "Che84.pdf",
abstract = "
A decision procedure for integrating a class of transcendental elementary functions in terms of elementary functions and error functions is described. The procedure consists of three mutually exclusive cases. In the first two cases a generalised procedure for completing squares is used to limit the error functions which can appear in the integral of a finite number. This reduces the problem to the solution of a differential equation and we use a result of Risch (1969) to solve it. The third case can be reduced to the determination of what we have termed $\$ \backslash \operatorname{sum} \$$-decompositions. The resutl presented here is the key procuedure to a more general algorithm which is described fully in Cherry (1983)."
— ignore -
\bibitem[Cherry 86]\{Che86\} Cherry, G.W.
title = "Integration in Finite Terms with Special Functions: The Logarithmic Integral", SIAM J. Comput. Vol 15 pp1-21 February 1986
\qquad
— ignore -
\bibitem[Cherry 89]\{Che89\} Cherry, G.W.
title = "An Analysis of the Rational Exponential Integral",
SIAM J. Computing Vol 18 pp 893-905 (1989)
paper $=$ "Che89.pdf",
abstract = "
In this paper an algorithm is presented for integrating expressions of

```
the form $\int{ge^f~dx}$, where $f$ and $g$ are rational functions of
$x$, in terms of a class of special functions called the special
incomplete $\Gamma$ functions. This class of special functions
includes the exponential integral, the error functions, the sine and
cosing integrals, and the Fresnel integrals. The algorithm presented
here is an improvement over those published previously for integrating
with special functions in the following ways: (i) This algorithm
combines all the above special functions into one algorithm, whereas
previously they were treated separately, (ii) Previous algorithms
require that the underlying field of constants be algebraically
closed. This algorithm, however, works over any field of
characteristic zero in which the basic field operations can be carried
out. (iii) This algorithm does not rely on Risch's solution of the
differential equation $y^\prime + fy = g$. Instead, a more direct
method of undetermined coefficients is used."
```

— ignore -
\bibitem[Churchill 06]\{Chur06\} Churchill, R.C.
title = "Liouville's Theorem on Integration Terms of Elementary Functions",
url = "http://www.sci.ccny.cuny.edu/~ksda/PostedPapers/liouv06.pdf",
paper = "Chur06.pdf",
abstract = "
This talk should be regarded as an elementary introduction to
differential algebra. It culminates in a purely algebraic proof, due
to M. Rosenlicht, of an 1835 theorem of Liouville on the existence of
''elementary"' integrals of ''elementary'" functions. The precise
meaning of elementary will be specified. As an application of that
theorem we prove that the indefinite integral $\$ \backslash i n t\left\{e^{\wedge}\left\{x^{\wedge} 2\right\}\right\}^{\sim} d x \$$
cannot be expressed in terms of elementary functions.
\begin\{itemize\} }
- Preliminaries on Meromorphic Functions
- Basic (Ordinary) Differential Algebra
- Differential Ring Extensions with No New Constants
- Extending Derivations
- Integration in Finite Terms
 \end\{itemize\}" }
 - ignore -
 \bibitem[Davenport 79b] \{Dav79b\} Davenport, James Harold
 title = "On the Integration of Algebraic Functions",
\(\qquad\)

- ignore -

```
\bibitem[Davenport 79c]{Dav79c} Davenport, J. H.
    title = "Algorithms for the Integration of Algebraic Functions",
Lecture Notes in Computer Science V 72 pp415-425 (1979)
    paper = "Dav79c.pdf",
    abstract = "
        The problem of finding elementary integrals of algebraic functions has
        long been recognized as difficult, and has sometimes been thought
        insoluble. Risch stated a theorem characterising the integrands with
        elementary integrals, and we can use the language of algebraic
        geometry and the techniques of Davenport to yield an algorithm that will
        always produce the integral if it exists. We explain the difficulty in
        the way of extending this algorithm, and outline some ways of solving
        it. Using work of Manin we are able to solve the problem in all cases
        where the algebraic expressions depend on a parameter as well as on
        the variable of integration."
```

 - ignore -
 \bibitem[Davenport 82a]\{Dav82a\} Davenport, J.H.
title = "The Parallel Risch Algorithm (I)"
paper = "Dav82a.pdf",
abstract = "
In this paper we review the so-called '(parallel Risch', algorithm for
the integration of transcendental functions, and explain what the
problems with it are. We prove a positive result in the case of
logarithmic integrands."
- ignore -
\bibitem[Davenport 82] \{Dav82\} Davenport, J.H.
title = "On the Parallel Risch Algorithm (III): Use of Tangents",
SIGSAM V16 no. 3 pp3-6 August 1982

- ignore -
\bibitem[Davenport 03]\{Dav03\} Davenport, James H.
title = "The Difficulties of Definite Integration",
url = "http://www.researchgate.net/publication/247837653_The_Diculties_of_Definite_Integration/file/72e7e
paper = "Dav03.pdf",
abstract = "
Indefinite integration is the inverse operation to differentiation, and, before we can understand what we mean by indefinite integration, we need to understand what we mean by differentiation."
- ignore -

```
\bibitem[Fateman 02]{Fat02} Fateman, Richard
    title = "Symbolic Integration",
    url = "http://inst.eecs.berkeley.edu/~ cs282/sp02/lects/14.pdf",
    paper = "Fat02.pdf",
```

 - axiom.bib -
 @inproceedings\{Gedd89,
author = "Geddes, K. O. and Stefanus, L. Y.",
title $=$ "On the Risch-norman Integration Method and Its Implementation
in MAPLE",
booktitle $=$ "Proc. of the ACM-SIGSAM 1989 Int. Symp. on Symbolic and
Algebraic Computation",
series = "ISSAC '89",
year = "1989",
isbn = "0-89791-325-6",
location $=$ "Portland, Oregon, USA",
pages = "212--217",
numpages = "6",
url = "http://doi.acm.org/10.1145/74540.74567",
doi $=$ "10.1145/74540.74567",
acmid = "74567",
publisher = "ACM",
address $=$ "New York, NY, USA",
paper $=$ "Gedd89.pdf",
abstract = "

Unlike the Recursive Risch Algorithm for the integration of transcendental elementary functions, the Risch-Norman Method processes the tower of field extensions directly in one step. In addition to logarithmic and exponential field extensions, this method can handle extentions in terms of tangents. Consequently, it allows trigonometric functions to be treated without converting them to complex exponential form. We review this method and describe its implementation in MAPLE. A heuristic enhancement to this method is also presented."
\}

- ignore -
\bibitem[Geddes 92a]\{GCL92a\} Geddes, K.O.; Czapor, S.R.; Labahn, G. title = "The Risch Integration Algorithm",
Algorithms for Computer Algebra, Ch 12 pp511-573 (1992)
paper $=$ "GCL92a.pdf",
\qquad
- ignore -
\bibitem[Hardy 1916] \{Hard16\} Hardy, G.H.
title $=$ "The Integration of Functions of a Single Variable", Cambridge Unversity Press, Cambridge, 1916
\% REF:00002
- ignore -
\bibitem[Harrington 78] \{Harr87\} Harrington, S.J.
title = "A new symbolic integration system in reduce", url = "http://comjnl.oxfordjournals.or/content/22/2/127.full.pdf", paper = "Harr87.pdf", abstract = "

A new integration system, employing both algorithmic and pattern match integration schemes is presented. The organization of the system differs from that of earlier programs in its emphasis on the algorithmic approach to integration, its modularity and its ease of revision. The new Norman-Rish algorithm and its implementation at the University of Cambridge are employed, supplemented by a powerful

```
collection of simplification and transformation rules. The facility
for user defined integrals and functions is also included. The program
is both fast and powerful, and can be easily modified to incorporate
anticipated developments in symbolic integration."
```

- axiom.bib -

```
@misc{Herm1872,
    author = "Hermite, E.",
    title = "Sur l'int\'{e}gration des fractions rationelles",
    journal = "Nouvelles Annales de Math\'{e}matiques",
    volume = "11",
    pages = "145-148",
    year = "1872"
}
```

- ignore -
\bibitem[Horowitz 71]\{Horo71\} Horowitz, Ellis
title = "Algorithms for Partial Fraction Decomposition and Rational Function Integration",
SYMSAC ' 71 Proc. ACM Symp. on Symbolic and Algebraic Manipulation (1971)
pp441-457
paper = "Horo71.pdf",
ref = "00018",
abstract = "
Algorithms for symbolic partial fraction decomposition and indefinite
integration of rational functions are described. Two types of
partial fraction decomposition are investigated, square-free and
complete square-free. A method is derived, based on the solution of
a linear system, which produces the square-free decomposition of any
rational function, say A / B. The computing time is show to be
$\$ 0\left(n \wedge 4(l n \operatorname{nf})^{\wedge} 2\right) \$$ where $\$\{\backslash r m \operatorname{deg}\}(A)<\{\backslash r m \backslash \operatorname{deg}\}(B)=n \$$ and $\$ f \$$
is a number which is closely related to the size of the coefficients
which occur in A and B. The complete square-free partical fraction
decomposition can then be directly obtained and it is shown that the
computing time for this process is also bounded by $\$ 0(n \wedge 4(\ln n f) \wedge 2) \$. "$
- ignore -

```
\bibitem[Jeffrey 97]{Jeff97} Jeffrey, D.J.; Rich, A.D.
    title = "Recursive integration of piecewise-continuous functions",
    url = "http://www.cybertester.com/data/recint.pdf",
    paper = "Jeff97.pdf",
    abstract = '
        An algorithm is given for the integration of a class of
        piecewise-continuous functions. The integration is with respect to a
        real variable, because the functions considered do not in general
        allow integration in the complex plane to be defined. The class of
        integrands includes commonly occurring waveforms, such as square
        waves, triangular waves, and the floor function; it also includes the
        signum function. The algorithm can be implemented recursively, and it
        has the property of ensuring that integrals are continuous on domains
        of maximum extent."
```

 - ignore -
 \bibitem[Jeffrey 99]\{Jeff99\} Jeffrey, D.J.; Labahn, G.; Mohrenschildt, M.v.;
Rich, A.D.
title = "Integration of the signum, piecewise and related functions",
url = "http://cs.uwaterloo.ca/~glabahn/Papers/issac99-2.pdf",
paper = "Jeff99.pdf",
abstract = "
When a computer algebra system has an assumption facility, it is
possible to distinguish between integration problems with respect to a
real variable, and those with respect to a complex variable. Here, a
class of integration problems is defined in which the integrand
consists of compositions of continuous functions and signum functions,
and integration is with respect to a real variable. Algorithms are
given for evaluating such integrals."
- ignore -
\bibitem[Kiymaz 04]\{Kiym04\} Kiymaz, Onur; Mirasyedioglu, Seref
title = "A new symbolic computation for formal integration with exact power series",
paper = "Kiym04.pdf",
abstract = "
This paper describes a new symbolic algorithm for formal integration
of a class of functions in the context of exact power series by using
generalized hypergeometric series and computer algebraic technique."

- ignore -
\bibitem[Knowles 93] \{Know93\} Knowles, P.
title = "Integration of a class of transcendental liouvillian functions with error-functions i", Journal of Symbolic Computation Vol 13 pp525-543 (1993)
\qquad
- ignore -
\bibitem[Knowles 95] \{Know95\} Knowles, P.
title = "Integration of a class of transcendental liouvillian functions with error-functions ii", Journal of Symbolic Computation Vol 16 pp227-241 (1995)
— axiom.bib -

```
@article{Krag09,
    author = "Kragler, R.",
    title = "On Mathematica Program for Poor Man's Integrator Algorithm",
    journal = "Programming and Computer Software",
    volume = "35",
    number = "2",
    pages = "63-78",
    year = "2009",
    issn = "0361-7688",
    paper = "Krag09.pdf",
    abstract = "
        In this paper by means of computer experiment we study advantages and
        disadvantages of the heuristical method of ''parallel integrator''. For
        this purpose we describe and use implementation of the method in
        Mathematica. In some cases we compare this implementation with the original
        one in Maple."
}
```

- ignore -
\bibitem[Lang 93]\{Lang93\} Lang, S.
title = "Algebra",
Addison-Wesly, New York, 3rd edition 1993
- ignore -

```
\bibitem[Leerawat 02]{Leer02} Leerawat, Utsanee; Laohakosol, Vichian
    title = "A Generalization of Liouville's Theorem on Integration in Finite Terms",
    url = "http://www.mathnet.or.kr/mathnet/kms_tex/113666.pdf",
    paper = "Leer02.pdf",
    abstract = "
        A generalization of Liouville's theorem on integration in finite
        terms, by enlarging the class of fields to an extension called
        Ei-Gamma extension is established. This extension includes the
        $\mathcal{E}\mathcal{L}$-elementary extensions of Singer, Saunders and
        Caviness and contains the Gamma function."
```

 - ignore -
 \bibitem[Leslie 09]\{Lesl09\} Leslie, Martin
title $=$ "Why you can't integrate $\exp \left(\$ x^{\wedge} 2 \$\right) "$,
url = "http://math.arizona.edu/~mleslie/files/integrationtalk.pdf",
paper = "Lesl09.pdf",
- ignore -
\bibitem[Lichtblau 11]\{Lich11\} Lichtblau, Daniel
title = "Symbolic definite (and indefinite) integration: methods and open issues",
ACM Comm. in Computer Algebra Issue 175, Vol 45, No. 1 (2011)
url = "http://www.sigsam.org/bulletin/articles/175/issue175.pdf",
paper = "Lich11.pdf",
abstract = "
The computation of definite integrals presents one with a variety of
choices. There are various methods such as Newton-Leibniz or Slater's
convolution method. There are questions such as whether to split or
merge sums, how to search for singularities on the path of
integration, when to issue conditional results, how to assess
(possibly conditional) convergence, and more. These various

```
considerations moreover interact with one another in a multitude of
ways. Herein we discuss these various issues and illustrate with examples."
```

- axiom.bib -

```
@article{Liou1833a,
    author = "Liouville, Joseph",
    title = "Premier m\'{e}moire sur la d\'{e}termination des int\'{e}grales
                dont la valeur est alg\'{e}brique",
    journal = "Journal de l'Ecole Polytechnique",
    volume = "14",
    pages = "124-128",
    year = "1833"
}
```

— axiom.bib -
@article\{Liou1833b, author = "Liouville, Joseph",
title $=$ "Second $m \$
{e\}moire sur la } d \backslash '\{e\}termination des int \'\{e\}grales dont la valeur est alg\’\{e\}brique",
journal = "Journal de l'Ecole Polytechnique",
volume = "14",
pages = "149-193", year = "1833"
\}

- ignore -
\bibitem[Liouville 1833c]\{Lio1833c\} Liouville, Joseph
title = "Note sur la determination des int\'egrales dont la valeur est alg\'ebrique", Journal f\"ur die Reine und Angewandte Mathematik, Vol 10 pp 247-259, (1833)
- ignore -

```
\bibitem[Liouville 1833d]{Lio1833d} Liouville, Joseph
    title = "Sur la determination des int\'egrales dont la valeur est alg\'ebrique",
{\sl Journal de l'Ecole Polytechnique}, 14:124-193, 1833
```

 - ignore -
 \bibitem[Liouville 1835]\{Lio1835\} Liouville, Joseph
title = "M\'emoire sur l'int\'gration d'une classe de fonctions transcendentes",
Journal $f \backslash$ "ur die Reine und Angewandte Mathematik,
Vol 13(2) pp 93-118, (1835)
- ignore -
\bibitem[Marc 94]\{Marc94\} Marchisotto, Elena Anne; Zakeri, Gholem-All
title = "An Invitation to Integration in Finite Terms",
College Mathematics Journal Vol 25 No 4 (1994) pp295-308
url = "http://www.rangevoting.org/MarchisottoZint.pdf",
paper = "Marc94.pdf",
- ignore -
\bibitem[Marik 91]\{Mari91\} Marik, Jan
title = "A note on integration of rational functions",
url = "http://dml.cz/bitstream/handle/10338.dmlcz/126024/MathBohem_116-1991-4_9.pdf",
paper = "Mari91.pdf",
abstract = "
Let \$P\$ and \$Q\$ be polynomials in one variable with complex coefficients
and let $\$ n \$$ be a natural number. Suppose that $\$ Q \$$ is not constant and
has only simple roots. Then there is a rational function $\$ \backslash$ varphi\$
with $\$ \backslash$ varphi^\prime=P/Q^\{n+1\}\$ if and only if the Wronskian of the
functions \$Q^\prime\$, \$(Q^2)^\prime,···
,(Q^n)^\prime\$,\$P\$ is
divisible by \$Q\$."
- ignore -

```
\bibitem[Moses 76]{Mos76} Moses, Joel
    title = "An introduction to the Risch Integration Algorithm",
ACM Proc. 1976 annual conference pp425-428
    paper = "Mos76.pdf",
    ref = "00048",
    abstract = "
        Risch's decision procedure for determining the integrability in closed
        form of the elementary functions of the calculus is presented via
        examples. The exponential and logarithmic cases of the algorithsm had
        been implemented for the MACSYMA system several years ago. The
        implementation of the algebraic case of the algorithm is the subject
        of current research."
```

 - ignore -
 \bibitem[Moses 71a] \{Mos71a\} Moses, Joel
title = "Symbolic Integration: The Stormy Decade",
CACM Aug 1971 Vol 14 No 8 pp548-560
url = "http://www-inst.eecs.berkeley.edu/~cs282/sp02/readings/moses-int.pdf",
paper $=$ "Mos71a.pdf",
ref = "00017",
abstract = "
Three approaches to symbolic integration in the 1960's are
described. The first, from artificial intelligence, led to Slagle's
SAINT and to a large degree to Moses' SIN. The second, from algebraic
manipulation, led to Monove's implementation and to Horowitz' and
Tobey's reexamination of the Hermite algorithm for integrating
rational functions. The third, from mathematics, led to Richardson's
proof of the unsolvability of the problem for a class of functions and
for Risch's decision procedure for the elementary functions.
Generalizations of Risch's algorithm to a class of special
functions and programs for solving differential equations and for
finding the definite integral are also described."
- ignore -
\bibitem[Norman 79] \{Nor79\} Norman, A.C.; Davenport, J.H.
title = "Symbolic Integration -- The Dust Settles?",
paper $=$ "Nor79.pdf",
abstract = "
By the end of the 1960s it had been shown that a computer could find
indefinite integrals with a competence exceeding that of typical
undergraduates. This practical advance was backed up by algorithmic interpretations of a number of clasical results on integration, and by some significant mathematical extensions to these same results. At that time it would have been possible to claim that all the major barriers in the way of a complete system for automated analysis had been breached. In this paper we survey the work that has grown out of the above-mentioned early results, showing where the development has been smooth and where it has spurred work in seemingly unrelated fields."
— ignore -
\bibitem[Ostrowski 46]\{0st46\} Ostrowski, A.
title = "Sur l'int\'egrabilit\'e \'el\’ementaire de quelques classes d'expressions", Comm. Math. Helv., Vol 18 pp 283-308, (1946)
\% REF:00008
— ignore -
\bibitem[Raab 12] \{Raab12\} Raab, Clemens G.
title $=$ "Definite Integration in Differential Fields",
url = "http://www.risc.jku.at/publications/download/risc_4583/PhD_CGR.pdf", paper = "Raab12.pdf",
abstract = "
The general goal of this thesis is to investigate and develop computer algebra tools for the simplification resp. evaluation of definite integrals. One way of finding the value of a def- inite integral is via the evaluation of an antiderivative of the integrand. In the nineteenth century Joseph Liouville was among the first who analyzed the structure of elementary antiderivatives of elementary functions systematically. In the early twentieth century the algebraic structure of differential fields was introduced for modeling the differential properties of functions. Using this framework Robert H. Risch published a complete algorithm for transcendental elementary integrands in 1969. Since then this result has been extended to certain other classes of integrands as well by Michael F. Singer, Manuel Bronstein, and several others. On the other hand, if no antiderivative of suitable form is available, then linear relations that are satisfied by the parameter integral of interest may be found based on the principle of parametric integration (often called differentiating under the integral sign or creative telescoping).

The main result of this thesis extends the results mentioned above to

```
a complete algo- rithm for parametric elementary integration for a
certain class of integrands covering a majority of the special
functions appearing in practice such as orthogonal polynomials,
polylogarithms, Bessel functions, etc. A general framework is provided
to model those functions in terms of suitable differential fields. If
the integrand is Liouvillian, then the present algorithm considerably
improves the efficiency of the corresponding algorithm given by Singer
et al. in 1985. Additionally, a generalization of Czichowskis
algorithm for computing the logarithmic part of the integral is
presented. Moreover, also partial generalizations to include other
types of integrands are treated.
As subproblems of the integration algorithm one also has to find solutions of linear or- dinary differential equations of a certain type. Some contributions are also made to solve those problems in our setting, where the results directly dealing with systems of differential equations have been joint work with Moulay A. Barkatou.
For the case of Liouvillian integrands we implemented the algorithm in form of our Mathematica package Integrator. Parts of the implementation also deal with more general functions. Our procedures can be applied to a significant amount of the entries in integral tables, both indefinite and definite integrals. In addition, our procedures have been successfully applied to interesting examples of integrals that do not appear in these tables or for which current standard computer algebra systems like Mathematica or Maple do not succeed. We also give examples of how parameter integrals coming from the work of other researchers can be solved with the software, e.g., an integral arising in analyzing the entropy of certain processes."
```


- ignore -

\bibitem[Raab 13] \{Raab13\} Raab, Clemens G. title $=$ "Generalization of Risch's Algorithm to Special Functions", url = "http://arxiv.org/pdf/1305.1481", paper = "Raab13.pdf", abstract = "

Symbolic integration deals with the evaluation of integrals in closed form. We present an overview of Risch's algorithm including recent developments. The algorithms discussed are suited for both indefinite and definite integration. They can also be used to compute linear relations among integrals and to find identities for special functions given by parameter integrals. The aim of this presentation is twofold: to introduce the reader to some basic idea of differential algebra in the context of integration and to raise awareness in the physics community of computer algebra algorithms for indefinite and definite
integration."

- ignore -

```
\bibitem[Raab xx]{Raabxx} Raab, Clemens G.
    title = "Integration in finite terms for Liouvillian functions",
    url = "http://www.mmrc.iss.ac.cn/~dart4/posters/Raab.pdf",
    paper = "Raabxx.pdf",
    abstract = "
        Computing integrals is a common task in many areas of science,
        antiderivatives are one way to accomplish this. The problem of
        integration in finite terms can be states as follows. Given a
        differential field $(F,D)$ and $f \in F$, compute $g$ in some
        elementary extension of $(F,D)$ such that $Dg = f$ if such a $g$
        exists.
```

 This problem has been solved for various classes of fields \$F\$. For
 rational functions \(\$(C(x)\), \(\backslash f r a c\{d\}\{d x\}) \$\) such a \(\$ \mathrm{~g} \$\) always exists and
 algorithms to compute it are known already for a long time. In 1969
 Risch published an algorithm that solves this problem when \$(F,D)\$ is
 a transcendental elementary extension of \(\$(C(x), \backslash f r a c\{d\}\{d x\}) \$\). Later
 this has been extended towards integrands being Liouvillian functions
 by Singer et. al. via the use of regular log-explicit extensions of
 \$(C(x), \frac\{d\}\{dx\})\$. Our algorithm extends this to handling
 transcendental Liouvillian extensions \(\$(F, D) \$\) of \(\$(C, 0) \$\) directly
 without the need to embed them into log-explicit extensions. For
 example, this means that
 \(\backslash\left[\backslash \operatorname{int}\left\{(z-x) x^{\wedge}\{z-1\} e^{\wedge}\{-x\} d x\right\}=x^{\wedge} z e^{\wedge}\{-x\} \backslash\right]\)
 can be computed without including \(\log (x)\) in the differential field."
 - ignore -
 \bibitem[Rich 09]\{Rich09\} Rich, A.D.; Jeffrey, D.J.
title = "A Knowledge Repository for Indefinite Integration Based on Transformation Rules", url = "http://www.apmaths.uwo.ca/~arich/A\%20Rule-based\%20Knowedge\%20Repository.pdf", paper = "Rich09.pdf", abstract = "

Taking the specific problem domain of indefinite integration, we describe the on-going development of a repository of mathematical knowledge based on transformation rules. It is important that the repository be not confused with a look-up table. The database of transformation rules is at present encoded in Mathematica, but this is

```
only one convenient form of the repository, and it could be readily
translated into other formats. The principles upon which the set of
rules is compiled is described. One important principle is
minimality. The benefits of the approach are illustrated with
examples, and with the results of comparisons with other approaches."
```

- axiom.bib -

```
@techreport{Risc68,
    author = "Risch, Robert",
    title = "On the integration of elementary functions which are built up
            using algebraic operations",
    type = "Research Report",
    number = "SP-2801/002/00",
    institution = "System Development Corporation, Santa Monica, CA, USA",
    year = "1968"
}
```

 — axiom.bib -
 @techreport\{Risc69a,
author = "Risch, Robert",
title = "Further results on elementary functions",
type = "Research Report",
number $=$ "RC-2042",
institution = "IBM Research, Yorktown Heights, NY, USA",
year = "1969"
\}
— axiom.bib -

```
@article{Risc69b,
    author = "Risch, Robert",
    title = "The problem of integration in finite terms",
    journal = "Transactions of the American Mathematical Society",
    volume = "139",
```

```
    year = "1969",
    pages = "167-189",
    paper = "Ris69b.pdf",
    abstract = "This paper deals with the problem of telling whether a
        given elementary function, in the sense of analysis, has an elementary
        indefinite integral."
}
```

 - axiom.bib -
 @article\{Risc70,
author = "Risch, Robert",
title $=$ "The Solution of the Problem of Integration in Finite Terms",
journal = "Bull. AMS",
year = "1970",
issn = "0002-9904",
volume = "76",
number = "3",
pages = "605-609",
paper = "Risc70.pdf",
abstract = "
The problem of integration in finite terms asks for an algorithm for
deciding whether an elementary function has an elementary indefinite
integral and for finding the integral if it does. 'Elementary') is
used here to denote those functions build up from the rational
functions using only exponentiation, logarithms, trigonometric,
inverse trigonometric and algebraic operations. This vaguely worded
question has several precise, but inequivalent formulations. The
writer has devised an algorithm which solves the classical problem of
Liouville. A complete account is planned for a future publication. The
present note is intended to indiciate some of the ideas and techniques
involved."
\}

- axiom.bib -

```
@article{Risc79,
    author = "Risch, Robert",
    title = "Algebraic properties of the elementary functions of analysis",
    journal = "American Journal of Mathematics",
    volume = "101",
    pages = "743-759",
```

```
    year = "1979"
}
    _ ignore -
\bibitem[Ritt 48]{Ritt48} Ritt, J.F.
    title = "Integration in Finite Terms",
Columbia University Press, New York 1948
% REF:00046
```

\qquad
— ignore -
\bibitem[Rosenlicht 68]\{Ro68\} Rosenlicht, Maxwell
title = "Liouville's Theorem on Functions with Elementary Integrals",
Pacific Journal of Mathematics Vol 24 No 1 (1968)
url = "http://msp.org/pjm/1968/24-1/pjm-v24-n1-p16-p.pdf",
paper = "Ro68.pdf",
ref = "00047",
abstract = "
Defining a function with one variable to be elemetary if it has an
explicit representation in terms of a finite number of algebraic
operations, logarithms, and exponentials. Liouville's theorem in its
simplest case says that if an algebraic function has an elementary
integral then the latter is itself an algebraic function plus a sum of
constant multiples of logarithms of algebraic functions. Ostrowski has
generalized Liouville's results to wider classes of meromorphic
functions on regions of the complex plane and J.F. Ritt has given the
classical account of the entire subject in his Integraion in Finite
Terms, Columbia University Press, 1948. In spite of the essentially
algebraic nature of the problem, all proofs so far have been analytic.
This paper gives a self contained purely algebraic exposition of the
probelm, making a few new points in addition to the resulting
simplicity and generalization."
— axiom.bib -
@article\{Rose72,

```
    author = "Rosenlicht, Maxwell",
    title = "Integration in finite terms",
    journal = "American Mathematical Monthly",
    year = "1972",
    volume = "79",
    pages = "963-972",
    paper = "Rose72.pdf",
}
```

- ignore -
\bibitem [Rothstein 76]\{Ro76\} Rothstein, Michael
title = "Aspects of symbolic integration and simplifcation of exponential and primitive functi
PhD thesis, University of Wisconsin-Madison (1976)
url = "http://www.cs.kent.edu/~rothstei/dis.pdf",
paper = "Ro76.pdf",
ref = "00051",
abstract = "
In this thesis we cover some aspects of the theory necessary to obtain
a canonical form for functions obtained by integration and
exponentiation from the set of rational functions.
These aspects include a new algorithm for symbolic integration of
functions involving logarithms and exponentials which avoids
factorization of polynomials in those cases where algebraic extension
of the constant field is not required, avoids partial fraction
decompositions, and only solves linear systems with a small number of
unknowns.
We have also found a theorem which states, roughly speaking, that if
integrals which can be represented as logarithms are represented as
such, the only algebraic dependence that a new exponential or
logarithm can satify is given by the law of exponents or the law of
logarithms."
- ignore -
\bibitem[Rothstein 76a] \{Ro76a\} Rothstein, Michael; Caviness, B.F.
title = "A structure theorem for exponential and primitive functions: a preliminary report",
ACM Sigsam Bulletin Vol 10 Issue 4 (1976)
paper = "Ro76a.pdf",
abstract = "

```
In this paper a generalization of the Risch Structure Theorem is reported.
The generalization applies to fields $F(t_1,\ldots,t_n)$ where $F$
is a differential field (in our applications $F$ will be a finitely
generated extension of $Q$, the field of rational numbers) and each $t_i$
is either algebraic over $F_{i-1}=F(t_1,\ldots,t_{i-1})$, is an
exponential of an element in $F_{i-1}$, or is an integral of an element
in $F_{i-1}$. If $t_i$ is an integral and can be expressed using
logarithms, it must be so expressed for the generalized structure
theorem to apply."
```

- ignore -
\bibitem[Rothstein 76b]\{Ro76b\} Rothstein, Michael; Caviness, B.F. title $=$ "A structure theorem for exponential and primitive functions", SIAM J. Computing Vol 8 No 3 (1979)
paper $=$ "Ro76b.pdf",
ref = "00104",
abstract = "
In this paper a new theorem is proved that generalizes a result of Risch. The new theorem gives all the possible algebraic relationships among functions that can be built up from the rational functions by algebraic operations, by taking exponentials, and by integration. The functions so generated are called exponential and primitive functions. From the theorem an algorithm for determining algebraic dependence among a given set of exponential and primitive functions is derived. The algorithm is then applied to a problem in computer algebra."
— axiom.bib -

```
@article{Roth77,
    author = "Rothstein, Michael",
    title = "A new algorithm for the integration of exponential and
                logarithmic functions",
    journal = "Proceedings of the 1977 MACSYMA Users Conference",
    year = "1977",
    pages = "263-274",
    publisher = "NASA Pub CP-2012"
}
```

- ignore -
\bibitem[Seidenberg 58]\{Sei58\} Seidenberg, Abraham title $=$ "Abstract differential algebra and the analytic case", Proc. Amer. Math. Soc. Vol 9 pp159-164 (1958)
- ignore -
\bibitem[Seidenberg 69]\{Sei69\} Seidenberg, Abraham
title = "Abstract differential algebra and the analytic case. II", Proc. Amer. Math. Soc. Vol 23 pp689-691 (1969)
- ignore -
\bibitem[Singer 85]\{Sing85\} Singer, M.F.; Saunders, B.D.; Caviness, B.F. title = "An extension of Liouville's theorem on integration in finite terms", SIAM J. of Comp. Vol 14 pp965-990 (1985)
url = "http://www4.ncsu.edu/~singer/papers/singer_saunders_caviness.pdf", paper = "Sing85.pdf", abstract = "

In Part 1 of this paper, we give an extension of Liouville's Theorem and give a number of examples which show that integration with special functions involves some phenomena that do not occur in integration with the elementary functions alone. Our main result generalizes Liouville's Theorem by allowing, in addition to the elementary functions, special functions such as the error function, Fresnel integrals and the logarithmic integral (but not the dilogarithm or exponential integral) to appear in the integral of an elementary function. The basic conclusion is that these functions, if they appear, appear linearly. We give an algorithm which decides if an elementary function, built up using only exponential functions and rational operations has an integral which can be expressed in terms of elementary functions and error functions."

- ignore -
\bibitem[Slagle 61]\{Slag61\} Slagle, J.
title = "A heuristic program that solves symbolic integration problems in freshman calculus", Ph.D Diss. MIT, May 1961; also Computers and Thought, Feigenbaum and Feldman. \% REF:00014
- ignore -
\bibitem[Terelius 09]\{Tere09\} Terelius, Bjorn
title = "Symbolic Integration",
paper = "Tere09.pdf",
abstract = "
Symbolic integration is the problem of expressing an indefinite integral
$\$ \backslash i n t\{f\} \$$ of a given function $\$ f \$$ as a finite combination $\$ \mathrm{~g} \$$ of elementary
functions, or more generally, to determine whether a certain class of
functions contains an element $\$ \mathrm{~g} \$$ such that $\$ \mathrm{~g}^{\wedge} \backslash$ prime $=\mathrm{f} \$$.

In the first part of this thesis, we compare different algorithms for symbolic integration. Specifically, we review the integration rules taught in calculus courses and how they can be used systematically to create a reasonable, but somewhat limited, integration method. Then we present the differential algebra required to prove the transcendental cases of Risch's algorithm. Risch's algorithm decides if the integral of an elementary function is elementary and if so computes it. The presentation is mostly self-contained and, we hope, simpler than previous descriptions of the algorithm. Finally, we describe Risch-Norman's algorithm which, although it is not a decision procedure, works well in practice and is considerably simpler than the full Risch algorithm.

In the second part of this thesis, we briefly discuss an implementation of a computer algebra system and some of the experiences it has given us. We also demonstrate an implementation of the rule-based approach and how it can be used, not only to compute integrals, but also to generate readable derivations of the results."

- axiom.bib -

```
@article{Trag76,
    author = "Trager, Barry",
    title = "Algebraic factoring and rational function integration",
    journal = "Proceedings of SYMSAC'76",
    year = "1976",
    pages = "219-226",
```

paper = "Trag76.pdf",
abstract = "
This paper presents a new, simple, and efficient algorithm for factoring polynomials in several variables over an algebraic number field. The algorithm is then used interatively to construct the splitting field of a polynomial over the integers. Finally the factorization and splitting field algorithms are applied to the problem of determining the transcendental part of the integral of a rational function. In particular, a constructive procedure is given for finding a least degree extension field in which the integral can be expressed."

- ignore -

\bibitem[Trager 76a]\{Tr76a\} Trager, Barry Marshall
title = "Algorithms for Manipulating Algebraic Functions",
MIT Master's Thesis.
url = "http://www.dm.unipi.it/pages/gianni/public_html/Alg-Comp/fattorizzazione-EA.pdf", paper = "Tr76a.pdf",
ref = "00050",
abstract = "
Given a base field \$k\$, of characteristic zero, with effective procedures for performing arithmetic and factoring polynomials, this thesis presents algorithms for extending those capabilities to elements of a finite algebraic symbolic manipulation system. An algebraic factorization algorithm along with a constructive version of the primitive element theorem is used to construct splitting fields of polynomials. These fields provide a context in which we can operate symbolically with all the roots of a set of polynomials. One application for this capability is rational function integrations. Previously presented symbolic algorithms concentrated on finding the rational part and were only able to compute the complete
integral in special cases. This thesis presents an algorithm for finding an algebraic extension field of least degreee in which the integral can be expressed, and then constructs the integral in that field. The problem of algebraic function integration is also examined, and a highly efficient procedure is presented for generating the algebraic part of integrals whose function fields are defined by a single radical extension of the rational functions."

```
@phdthesis{Trag84,
    author = "Trager, Barry",
    title = "On the integration of algebraic functions",
    school = "MIT",
    year = "1984",
    url = "http://www.dm.unipi.it/pages/gianni/public_html/Alg-Comp/thesis.pdf",
    paper = "Trag76.pdf",
    abstract = "
        We show how the ''rational', approach for integrating algebraic
        functions can be extended to handle elementary functions. The
        resulting algorithm is a practical decision procedure for determining
        whether a given elementary function has an elementary antiderivative,
        and for computing it if it exists."
}
```

- ignore -
\bibitem[W\"urfl 07]\{Wurf07\} W\"urfl, Andreas
title = "Basic Concepts of Differential Algebra",
url = "http://www14.in.tum.de/konferenzen/Jass07/courses/1/Wuerfl/wuerfl_paper.pdf",
paper $=$ "Wurf07.pdf",
abstract = "
Modern computer algebra systems symbolically integrate a vast variety
of functions. To reveal the underlying structure it is necessary to
understand infinite integration not only as an analytical problem but
as an algebraic one. Introducing the differential field of elementary
functions we sketch the mathematical tools like Liouville's Principle
used in modern algorithms. We present Hermite's method for integration
of rational functions as well as the Rothstein/Trager method for
rational and for elementary functions. Further applications of the
mentioned algorithms in the field of ODE's conclude this paper."

2.24 Partial Fraction Decomposition

- ignore -
\bibitem[Angell]\{Angell\} Angell, Tom
title $=$ "Guidelines for Partial Fraction Decomposition", url = "http://www.math.udel.edu/~angell/partfrac_I.pdf", paper = "Angell.pdf",

```
- ignore -
\bibitem[Laval 08]{Lava08} Laval, Philippe B.
    title = "Partial Fractions Decomposition",
    url = "http://www.math.wisc.edu/~ park/Fall2011/integration/Partial%20Fraction.pdf",
    paper = "Lava08.pdf",
```

 - ignore -
 \bibitem[Mudd 14]\{Mudd14\} Harvey Mudd College
title = "Partial Fractions",
url = "http://www.math.hmc.edu/calculus/tutorials/partial_fractions/partial_fractions.pdf",
paper $=$ "Mudd14.pdf",

- ignore -

```
\bibitem[Rajasekaran 14]{Raja14} Rajasekaran, Raja
    title = "Partial Fraction Expansion",
    url = "http://www.utdallas.edu/~raja1/EE4361%20Spring%2014/Lecture%20Notes/Partial%20Fractions
```

 paper = "Raja14.pdf",
 \qquad

- ignore -

```
\bibitem[Wootton 14]{Woot14} Wootton, Aaron
    title = "Integration of Rational Functions by Partial Fractions",
    url = "http://faculty.up.edu/wootton/calc2/section7.4.pdf",
    paper = "Woot14.pdf",
```


2.25 Ore Rings

This is used as a reference for the LeftOreRing category, in particular, the least left common multiple (lcmCoef) function.

- ignore -

```
\bibitem[Abramov 97]{Abra97} Abramov, Sergei A.; van Hoeij, Mark
    title = "A method for the Integration of Solutions of Ore Equations",
Proc ISSAC 97 pp172-175 (1997)
    paper = "Abra97.pdf",
    abstract = "
        We introduce the notion of the adjoint Ore ring and give a definition
        of adjoint polynomial, operator and equation. We apply this for
        integrating solutions of Ore equations."
```

 - ignore -
 \bibitem[Delenclos 06]\{DL06\} Delenclos, Jonathon; Leroy, Andr\'e
title = "Noncommutative Symmetric functions and \$W\$-polynomials",
url = "http://arxiv.org/pdf/math/0606614.pdf",
paper = "DL06.pdf",
abstract = "
Let \$K\$, \$S\$, \$D\$ be a division ring an endomorphism and a
\$S\$-derivation of $\$ \mathrm{~K} \$$, respectively. In this setting we introduce
generalized noncommutative symmetric functions and obtain Vi\'ete
formula and decompositions of different operators. \$W\$-polynomials
show up naturally, their connetions with $\$ P \$$-independency. Vandermonde
and Wronskian matrices are briefly studied. The different linear
factorizations of $\$ W \$$-polynomials are analysed. Connections between
the existence of LLCM (least left common multiples) of monic linear
polynomials with coefficients in a ring and the left duo property are
established at the end of the paper."
- ignore -
\bibitem[Abramov 05]\{Abra05\} Abramov, S.A.; Le, H.Q.; Li, Z.
'"Univariate Ore Polynomial Rings in Computer Algebra'"
url = "http://www.mmrc.iss.ac.cn/~zmli/papers/oretools.pdf",
paper = "Abra05.pdf",

```
abstract = "
    We present some algorithms related to rings of Ore polynomials (or,
    briefly, Ore rings) and describe a computer algebra library for basic
    operations in an arbitrary Ore ring. The library can be used as a
    basis for various algorithms in Ore rings, in particular, in
    differential, shift, and $q$-shift rings."
```


2.26 Number Theory

- axiom.bib -
@InProceedings\{Kalt89d,
author = "Kaltofen, E. and Valente, T. and Yui, N.", title $=$ "An improved \{Las Vegas $\}$ primality test",
booktitle = "Proc. 1989 Internat. Symp. Symbolic Algebraic Comput.", crossref = "ISSAC89",
pages = "26--33",
year = "1989",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/89/KVY89.pdf", paper = "Kalt89d.pdf",
\}
- axiom.bib -
@InCollection\{Kalt91b,
author = "Kaltofen, E. and Yui, N.",
editor $=$ "D. V. Chudnovsky and G. V. Chudnovsky and H. Cohn and
M. B. Nathanson",
title = "Explicit construction of \{Hilbert\} class fields of imaginary quadratic fields by integer lattice reduction",
booktitle = "Number Theory New York Seminar 1989--1990",
pages = "150--202",
publisher = "Springer-Verlag",
year = "1991",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/91/KaYui91.pdf",
paper = "Kalt91b.pdf",
\}
- axiom.bib -
@InProceedings\{Kalt84a,
author $=$ "Kaltofen, E. and Yui, N.",
title $=$ "Explicit construction of the $\{$ Hilbert $\}$ class field of imaginary quadratic fields with class number 7 and 11",
booktitle = "Proc. EUROSAM '84",
pages = "310--320",
crossref = "EUROSAM84",
year = "1984",
url =
"http://www.math.ncsu.edu/~kaltofen/bibliography/84/KaYui84_eurosam.ps.gz", paper $=$ "Kalt84a.ps", \}
- ignore -
\bibitem[Shoup 08] \{Sho08\} Shoup, Victor
' A Computational Introduction to Number Theory', url = "http://shoup.net/ntb/ntb-v2.pdf", paper $=$ "Sho08.pdf",

2.27 Sparse Polynomial Interpolation

— axiom.bib —
@InProceedings\{Kalt07a,
author = "Kaltofen, Erich and Yang, Zhengfeng and Zhi, Lihong",
title $=$ "On probabilistic analysis of randomization in hybrid
symbolic-numeric algorithms",
year = "2007",
booktitle = "Proc. 2007 Internat. Workshop on Symbolic-Numeric Comput.",
crossref = "SNC07",
pages = "11--17", url = "http://www.math.ncsu.edu/~kaltofen/bibliography/07/KYZ07.pdf", paper $=$ "Kalt07a.pdf",
\}

```
    _ axiom.bib -
@InProceedings{Kalt07b,
    author = "Kaltofen, Erich and Yang, Zhengfeng",
    title = "On Exact and Approximate Interpolation of Sparse
                Rational Functions",
    year = "2007",
    booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'07",
    crossref = "ISSAC07",
    pages = "203--210",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/07/KaYa07.pdf",
    paper = "Kalt07b.pdf",
}
```

 - axiom.bib -
 @Article\{Gies03,
author = "Giesbrecht, Mark and Kaltofen, Erich and Lee, Wen-shin",
title = "Algorithms for Computing Sparsest Shifts of Polynomials in
Power, \{Chebychev\}, and \{Pochhammer\} Bases",
year = "2003",
journal = "Journal of Symbolic Computation",
volume = "36",
number = "3--4",
pages = "401--424",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/03/GKL03.pdf",
paper = "Gies03.pdf",
\}
— axiom.bib -
@InProceedings\{Gies02,
author = "Giesbrecht, Mark and Kaltofen, Erich and Lee, Wen-shin",
title = "Algorithms for Computing the Sparsest Shifts for Polynomials via the \{Berlekamp\}/\{Massey\} Algorithm",
booktitle = "Proc. 2002 Internat. Symp. Symbolic Algebraic Comput.",
crossref = "ISSAC02",
pages = "101--108",
year = "2002",

```
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/02/GKL02.pdf",
    paper = "Gies02.pdf",
}
```

 — axiom.bib -
    ```
@Article{Kalt03b,
    author = "Kaltofen, Erich and Lee, Wen-shin",
    title = "Early Termination in Sparse Interpolation Algorithms",
    year = "2003",
    journal = "Journal of Symbolic Computation",
    volume = "36",
    number = "3--4",
    pages = "365--400",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/03/KL03.pdf",
    paper = "Kalt03b.pdf",
}
```

 — axiom.bib -
 @InProceedings\{Kalt00a,
author $=$ "Kaltofen, E. and Lee, W.-s. and Lobo, A.A.",
title = "Early termination in \{Ben-Or/Tiwari\} sparse interpolation
and a hybrid of \{Zippel\}'s algorithm",
booktitle = "Proc. 2000 Internat. Symp. Symbolic Algebraic Comput.",
crossref = "ISSAC2K",
pages = "192--201",
year = "2000",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/2K/KLL2K.pdf",
paper = "Kalt00a.pdf",
\}

- axiom.bib -
@InProceedings\{Kalt10b, author = "Kaltofen, Erich L.", title $=$ "Fifteen years after $\{D S C\}$ and \{WLSS2\} \{What\} parallel

```
            computations {I} do today [{Invited} Lecture at {PASCO} 2010]",
    year = "2010",
    booktitle = "Proc. 2010 Internat. Workshop on Parallel Symbolic Comput.",
    crossref = "PASCO10",
    pages = "10--17",
    month = "July",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/10/Ka10_pasco.pdf",
    paper = "Kalt1Ob.pdf",
}
```


- axiom.bib -

@InProceedings\{Kalt90
author = "Kaltofen, E. and Lakshman, Y.N. and Wiley, J.M.", editor = "S. Watanabe and M. Nagata", title = "Modular rational sparse multivariate polynomial interpolation", booktitle = "Proc. 1990 Internat. Symp. Symbolic Algebraic Comput.", pages = "135--139", publisher = "ACM Press", year = "1990",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/90/KLW90.pdf",
paper = "Kalt90.pdf",
\}

- axiom.bib -
@InProceedings\{Kalt88a,
author = "Kaltofen, E. and Yagati, Lakshman",
title $=$ "Improved sparse multivariate polynomial interpolation algorithms",
booktitle = "Symbolic Algebraic Comput. Internat. Symp. ISSAC '88 Proc.",
crossref = "ISSAC88",
pages = "467--474",
year = "1988",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/88/KaLa88.pdf",
paper = "Kalt88a.pdf",
\}

2.28 Divisions and Algebraic Complexity

```
    _ axiom.bib -
@InCollection{Gren11,
    author = "Grenet, Bruno and Kaltofen, Erich L. and Koiran, Pascal
                and Portier, Natacha",
    title = "Symmetric Determinantal Representation of Formulas and Weakly
            Skew Circuits",
    booktitle = "Randomization, Relaxation, and Complexity in Polynomial
            Equation Solving",
    year = "2011",
    editor = "Leonid Gurvits and Philippe P\'{e}bay and J. Maurice Rojas
            and David Thompson",
    pages = "61--96",
    publisher = "American Mathematical Society",
    address = "Providence, Rhode Island, USA",
    isbn = "978-0-8218-5228-6",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/10/GKKP10.pdf",
    paper = "Gren11.pdf",
}
```

- axiom.bib -

```
@InProceedings{Kalt08a,
    author = "Kaltofen, Erich and Koiran, Pascal",
    title = "Expressing a Fraction of Two Determinants as a Determinant",
    year = "2008",
    booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'08",
    crossref = "ISSAC08",
    pages = "141--146",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/08/KaKoi08.pdf",
    paper = "Kalt08a.pdf",
}
```

— axiom.bib -
@Article\{Hitz95,
author = "Kitz, M.A. and Kaltofen, E.",
title $=$ "Integer division in residue number systems",

```
    journal = "IEEE Trans. Computers",
    year = "1995",
    volume = "44",
    number = "8",
    pages = "983--989",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/95/HiKa95.pdf",
    paper = "Hitz95.pdf",
}
```

- axiom.bib -
@InProceedings\{Kalt92a, author = "Kaltofen, E.",
title = "On computing determinants of matrices without divisions",
booktitle = "Proc. 1992 Internat. Symp. Symbolic Algebraic Comput.",
crossref = "ISSAC92",
pages = "342--349",
year = "1992",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/92/Ka92_issac.pdf",
paper = "Kalt92a.pdf",
\}
- axiom.bib -

```
@Article{Cant91,
    author = "Cantor, D.G. and Kaltofen, E.",
    title = "On fast multiplication of polynomials over arbitrary algebras",
    journal = "Acta Inform.",
    year = "1991",
    volume = "28",
    number = "7",
    pages = "693--701",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/91/CaKa91.pdf",
    paper = "Cant91.pdf",
}
```

- axiom.bib -

```
@Article{Kalt88b,
    author = "Kaltofen, E.",
    title = "Greatest common divisors of polynomials given by
            straight-line programs",
    journal = "J. ACM",
    year = "1988",
    volume = "35",
    number = "1",
    pages = "231--264",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/88/Ka88_jacm.pdf",
    paper = "Kalt88b.pdf",
}
```


2.29 Polynomial Factorization

- axiom.bib -

```
@PhdThesis{Kalt82,
    author = "Kaltofen, E.",
    title = "On the complexity of factoring polynomials with integer
            coefficients",
    school = "RPI",
    address = "Troy, N. Y.",
    year = "1982",
    month = "December",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/82/Ka82_thesis.pdf",
    paper = "Kalt82.pdf",
}
```

— axiom.bib -
@Article\{Gath85,
author $=$ "\{von zur Gathen\}, Joachim and Kaltofen, E.",
title = "Factoring sparse multivariate polynomials",
journal = "J. Comput. System Sci.",
year = "1985",
volume = "31",
pages = "265--287",
url =
"http://www.math.ncsu.edu/~kaltofen/bibliography/85/GaKa85_mathcomp.ps.gz",

```
    paper = "Gath85.ps",
}
```

- axiom.bib -

```
@InCollection{Kalt11c,
    author = "Kaltofen, Erich and Lecerf, Gr{\'e}goire",
    title = "Section 11.5. {Factorization} of multivariate polynomials",
    booktitle = "Handbook of Finite Fields",
    crossref = "HFF11",
    pages = "382--392",
    year = "2011",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/11/KL11.pdf",
    paper = "Kalt11c.pdf",
}
```

- axiom.bib -
@InProceedings\{Kalt05b,
author = "Kaltofen, Erich and Koiran, Pascal",
title = "On the complexity of factoring bivariate supersparse
(lacunary) polynomials",
year = "2005",
booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC’05",
crossref = "ISSAC05",
pages = "208--215",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/05/KaKoi05.pdf",
paper = "Kalt05b.pdf",
\}
- axiom.bib -
@InProceedings\{Kalt06a,
author = "Kaltofen, Erich and Koiran, Pascal",
title = "Finding Small Degree Factors of Multivariate Supersparse
(Lacunary) Polynomials Over Algebraic Number Fields",
year = "2006",

```
    booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'06",
    crossref = "ISSAC06",
    pages = "162--168",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/06/KaKoi06.pdf",
    paper = "Kalt06a.pdf",
}
```

\qquad
— axiom.bib -
@InProceedings\{Kalt97a,
author = "Kaltofen, E. and Shoup, V.",
title = "Fast polynomial factorization over high algebraic extensions of
finite fields",
booktitle = "Proc. 1997 Internat. Symp. Symbolic Algebraic Comput.",
crossref = "ISSAC97",
year = "1997",
pages = "184--188",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/97/KaSh97.pdf",
paper = "Kalt97a.pdf",
\}
— axiom.bib -

```
@Article{Kalt98,
    author = "Kaltofen, E. and Shoup, V.",
    title = "Subquadratic-time factoring of polynomials over finite fields",
    journal = "Math. Comput.",
    month = "July",
    year = "1998",
    volume = "67",
    number = "223",
    pages = "1179--1197",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/98/KaSh98.pdf",
    paper = "Kalt98.pdf",
}
```

— axiom.bib -

```
@InProceedings{Kalt95a,
    author = "Kaltofen, E. and Shoup, V.",
    title = "Subquadratic-time factoring of polynomials over finite fields",
    booktitle = "Proc. 27th Annual ACM Symp. Theory Comput.",
    year = "1995",
    publisher = "ACM Press",
    address = "New York, N.Y.",
    pages = "398--406",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/95/KaSh95.ps.gz",
    paper = "Kalt95a.ps",
}
```

- axiom.bib -
@InProceedings\{Diaz95,
author = "Diaz, A. and Kaltofen, E.",
title = "On computing greatest common divisors with polynomials given by
black boxes for their evaluation",
booktitle = "Proc. 1995 Internat. Symp. Symbolic Algebraic Comput.",
crossref = "ISSAC95",
pages = "232--239",
year = "1995",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/95/DiKa95.ps.gz",
paper = "Diaz95.ps",
\}
- axiom.bib -

```
@InProceedings{Kalt88,
    author = "Kaltofen, E. and Trager, B.",
    title = "Computing with polynomials given by black boxes for their
        evaluations: Greatest common divisors, factorization, separation of
        numerators and denominators",
    booktitle = "Proc. 29th Annual Symp. Foundations of Comp. Sci.",
    pages = "296--305",
    year = "1988",
    organization = "IEEE",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/88/focs88.ps.gz",
    paper = "Kalt88.ps",
}
```

- axiom.bib -

```
@InProceedings{Kalt85b,
    author = "Kaltofen, E.",
    title = "Computing with polynomials given by straight-line programs {II};
            sparse factorization",
    booktitle = "Proc. 26th Annual Symp. Foundations of Comp. Sci.",
    year = "1985",
    pages = "451--458",
    organization = "IEEE",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_focs.ps.gz",
    paper = "Kalt85b.ps",
}
```

— axiom.bib -
@InProceedings\{Kalt86, author = "Kaltofen, E.",
title = "Uniform closure properties of p-computable functions",
booktitle = "Proc. 18th Annual ACM Symp. Theory Comput.",
year = "1986",
pages = "330--337",
organization $=$ "ACM",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/86/Ka86_stoc.pdf",
paper = "Kalt86.pdf",
\}

- axiom.bib -
@InProceedings\{Kalt87b, author = "Kaltofen, E.", title = "Single-factor Hensel lifting and its application to the straight-line complexity of certain polynomials",
booktitle $=$ "Proc. 19th Annual ACM Symp. Theory Comput.",
year = "1987",
pages = "443--452",
organization = "ACM",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/87/Ka87_stoc.pdf", paper $=$ "Kalt87b.pdf",
- axiom.bib -
@InCollection\{Kalt89,
author = "Kaltofen, E.", editor = "S. Micali",
title $=$ "Factorization of polynomials given by straight-line programs",
booktitle = "Randomness and Computation",
pages = "375--412",
publisher = "JAI Press Inc.",
year = "1989",
volume = "5",
series = "Advances in Computing Research",
address $=$ "Greenwhich, Connecticut",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/89/Ka89_slpfac.pdf",
paper = "Kalt89.pdf",
\}
- axiom.bib -

```
@Article{Gao04,
    author = "Gao, Shuhong and Kaltofen, E. and Lauder, A.",
    title = "Deterministic distinct degree factorization for polynomials
                over finite fields",
    year = "2004",
    journal = "Journal of Symbolic Computation",
    volume = "38",
    number = "6",
    pages = "1461--1470",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/01/GKL01.pdf",
    paper = "Gao04.pdf",
}
```

- axiom.bib -

```
    author = "Kaltofen, E.",
    title = "Deterministic irreducibility testing of polynomials over
            large finite fields",
    journal = "Journal of Symbolic Computation",
    year = "1987",
    volume = "4",
    pages = "77--82",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/87/Ka87_jsc.ps.gz",
    paper = "Kalt87c.ps",
}
```

\qquad
— axiom.bib -
@Article\{Kalt95b,
author = "Kaltofen, E.",
title = "Effective \{Noether\} irreducibility forms and applications",
journal = "J. Comput. System Sci.",
year = "1995",
volume = "50",
number = "2",
pages = "274--295",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/95/Ka95_jcss.pdf",
paper $=$ "Kalt95b.pdf",
\}
\qquad
— axiom.bib -

```
@Article{Kalt85a,
    author = "Kaltofen, E.",
    title = "Fast parallel absolute irreducibility testing",
    journal = "Journal of Symbolic Computation",
    year = "1985",
    volume = "1",
    number = "1",
    pages = "57--67",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_jsc.pdf",
    paper = "Kalt85a.pdf",
}
```

- axiom.bib -

```
@Article{Gath85a,
    author = "{von zur Gathen}, Joachim and Kaltofen, E.",
    title = "Factoring multivariate polynomials over finite fields",
    journal = "Math. Comput.",
    year = "1985",
    volume = "45",
    pages = "251--261",
    url =
        "http://www.math.ncsu.edu/~kaltofen/bibliography/85/GaKa85_mathcomp.ps.gz",
    paper = "Gath85a.ps",
}
```

- axiom.bib -
@Article\{Kalt85e,
author = "Kaltofen, E.",
title $=$ "Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factorization",
journal = "\{SIAM\} J. Comput.",
year = "1985",
volume = "14",
number = "2",
pages = "469--489",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_sicomp.pdf", paper = "Kalt85e.pdf",
\}
- axiom.bib -
@InProceedings\{Kalt82a,
author = "Kaltofen, E.",
title = "A polynomial-time reduction from bivariate to univariate integral polynomial factorization",
booktitle $=$ "Proc. 23rd Annual Symp. Foundations of Comp. Sci.", year = "1982",
pages = "57--64",
organization = "IEEE",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/82/Ka82_focs.pdf",

```
    paper = "Kalt82a.pdf",
}
```

\qquad

```
— axiom.bib -
@InProceedings\{Kalt03, author = "Kaltofen, Erich", title = "Polynomial Factorization: a Success Story", year = "2003",
    booktitle = "Symbolic Algebraic Comput. Internat. Symp. ISSAC '88 Proc.",
    crossref = "ISSAC03",
    pages = "3--4",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/03/Ka03.pdf",
    keywords = "survey",
    paper = "Kalt03.pdf",
}
```

— axiom.bib -
@InProceedings\{Kalt92b,
author = "Kaltofen, E.",
title $=$ "Polynomial factorization 1987-1991",
booktitle = "Proc. LATIN '92",
editor $=$ "I. Simon",
series $=$ "Lect. Notes Comput. Sci.",
volume = "583",
pages = "294--313",
publisher = "Springer-Verlag",
year = "1992",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/92/Ka92_latin.pdf", keywords = "survey", paper = "Kalt92b.pdf",
\}
— axiom.bib -
@InCollection\{Kalt90c,

```
    author = "Kaltofen, E.",
    editor = "D. V. Chudnovsky and R. D. Jenks",
    title = "Polynomial Factorization 1982-1986",
    booktitle = "Computers in Mathematics",
    pages = "285--309",
    publisher = "Marcel Dekker, Inc.",
    year = "1990",
    volume = "125",
    series = "Lecture Notes in Pure and Applied Mathematics",
    address = "New York, N. Y.",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/90/Ka90_survey.ps.gz",
    keywords = "survey",
    paper = "Kalt90c.ps",
}
```

— axiom.bib -

```
@InCollection{Kalt82b,
    author = "Kaltofen, E.",
    title = "Polynomial factorization",
    editor = "B. Buchberger and G. Collins and R. Loos",
    booktitle = "Computer Algebra",
    edition = "2",
    pages = "95--113",
    publisher = "Springer-Verlag",
    year = "1982",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/82/Ka82_survey.ps.gz",
    keywords = "survey",
    paper = "Kalt82b.ps",
}
```


2.30 Branch Cuts

\qquad

```
@article{Beau03,
    author = "Beaumont, James and Bradford, Russell and Davenport, James H.",
    title = "Better simplification of elementary functions through power series",
    journal = "2003 International Symposium on Symbolic and Algebraic Computation",
    series = "ISSAC'03",
```

```
    year = "2003",
    month = "August",
    paper = "Beau03.pdf",
    abstract = "
        In [5], we introduced an algorithm for deciding whether a proposed
        simplification of elementary functions was correct in the presence of
    branch cuts. This algorithm used multivalued function simplification
    followed by verification that the branches were consistent.
    In [14] an algorithm was presented for zero-testing functions defined
    by ordinary differential equations, in terms of their power series.
    The purpose of the current paper is to investigate merging the two
    techniques. In particular, we will show an explicit reduction to the
    constant problem [16]."
}
```

 - axiom.bib -
 @article\{Beau07,
author = "Beaumont, James C. and Bradford, Russell J. and
Davenport, James H. and Phisanbut, Nalina",
title = "Testing elementary function identities using CAD",
journal = "Applicable Algebra in Engineering, Communication and Computing",
year = "2007",
volume = "18",
number = "6",
issn = "0938-1279",
publisher = "Springer-Verlag",
pages = "513-543",
paper = "Beau07.pdf",
abstract = "
One of the problems with manipulating function identities in computer
algebra systems is that they often involve functions which are
multivalued, whilst most users tend to work with single-valued
functions. The problem is that many well-known identities may no
longer be true everywhere in the complex plane when working with their
single-valued counterparts. Conversely, we cannot ignore them, since
in particular contexts they may be valid. We investigate the
practicality of a method to verify such identities by means of an
experiment; this is based on a set of test examples which one might
realistically meet in practice. Essentially, the method works as
follows. We decompose the complex plane via means of cylindrical
algebraic decomposition into regions with respect to the branch cuts
of the functions. We then test the identity numerically at a sample
point in the region. The latter step is facilitated by the notion of
the $\{\backslash$ sl adherence $\}$ of a branch cut, which was previously introduced by the authors. In addition to presenting the results of the experiment, we explain how adherence relates to the proposal of $\{\backslash$ sl signed zeros $\}$ by W. Kahan, and develop this idea further in order to allow us to cover previously untreatable cases. Finally, we discuss other ways to improve upon our general methodology as well as topics for future research."

- axiom.bib -

```
@article{Brad02,
    author="Bradford, Russell and Corless, Robert M. and Davenport, James H. and
                Jeffrey, David J. and Watt, Stephen M.",
    title="Reasoning about the Elementary Functions of Complex Analysis",
    journal="Annals of Mathematics and Artificial Intelligence",
    year="2002",
    issn="1012-2443",
    volume="36",
    number="3",
    doi="10.1023/A:1016007415899",
    url="http://dx.doi.org/10.1023/A%3A1016007415899",
    publisher="Kluwer Academic Publishers",
    keywords="elementary functions; branch cuts; complex identities",
    pages="303-318",
    paper = "Brad02.pdf",
    abstract = "
        There are many problems with the simplification of elementary
        functions, particularly over the complex plane, though not
        exclusively. Systems tend to make ''howlers') or not to simplify
        enough. In this paper we outline the ''unwinding number') approach to
        such problems, and show how it can be used to prevent errors and to
        systematise such simplification, even though we have not yet reduced
        the simplification process to a complete algorithm. The unsolved
        problems are probably more amenable to the techniques of artificial
        intelligence and theorem proving than the original problem of complex
        variable analysis."
}
```

- axiom.bib -
@inproceedings\{Chyz11,

```
    author = "Chyzak, Fr{\'e}d{\'e}ric and Davenport, James H. and
                Koutschan, Christoph and Salvy, Bruno",
    title = "On Kahan's Rules for Determining Branch Cuts",
    booktitle = "Proc. 13th Int. Symp. on Symbolic and Numeric Algorithms for Scientific Computing",
    year = "2011",
    isbn = "978-1-4673-0207-4",
    location = "Timisoara",
    pages = "47-51",
    doi = "10.1109/SYNASC.2011.51",
    acmid = "258794",
    publisher = "IEEE",
    paper = "Chyz11.pdf",
    abstract = "
        In computer algebra there are different ways of approaching the
        mathematical concept of functions, one of which is by defining them as
    solutions of differential equations. We compare different such
    appraoches and discuss the occurring problems. The main focus is on
    the question of determining possible branch cuts. We explore the
    extent to which the treatment of branch cuts can be rendered (more)
    algorithmic, by adapting Kahan's rules to the differential equation
    setting."
}
```

— axiom.bib -
@article\{Dave10,
author = "Davenport, James",
title $=$ \{The Challenges of Multivalued "Functions"\},
journal = "Lecture Notes in Computer Science",
volume = "6167",
year = "2010",
pages $=$ "1-12",
paper = "Dave10.pdf",
abstract = "
Although, formally, mathematics is clear that a function is a
single-valued object, mathematical practice is looser, particularly
with n-th roots and various inverse functions. In this paper, we point
out some of the looseness, and ask what the implications are, both for
Artificial Intelligence and Symbolic Computation, of these practices.
In doing so, we look at the steps necessary to convert existing tests
into
\begin\{itemize\} }
- (a) rigorous statements
- (b) rigorously proved statements
 \end\{itemize\} }
 In particular we ask whether there might be a constant "de Bruij factor"'
[18] as we make these texts more formal, and conclude that the answer depends greatly on the interpretation being placed on the symbols." \}

- axiom.bib -
@article\{Dave12,
author = "Davenport, James H. and Bradford, Russell and England, Matthew and Wilson, David",
title $=$ "Program Verification in the presence of complex numbers, functions with branch cuts etc",
journal = "14th Int. Symp. on Symbolic and Numeric Algorithms for Scientific Computing",
year = "2012",
series = "SYNASC'12",
pages = "83-88",
publisher = "IEEE",
paper = "Dave12.pdf",
abstract = "
In considering the reliability of numerical programs, it is normal to ''limit our study to the semantics dealing with numerical precision'. On the other hand, there is a great deal of work on the reliability of programs that essentially ignores the numerics. The thesis of this paper is that there is a class of problems that fall between the two, which could be described as ''does the low-level arithmetic implement the high-level mathematics''. Many of these problems arise because mathematics, particularly the mathematics of the complex numbers, is more difficult than expected; for example the complex function log is not continuous, writing down a program to compute an inverse function is more complicated than just solving an equation, and many algebraic simplification rules are not universally valid.

The good news is that these problems are theoretically capable of being solved, and are practically close to being solved, but not yet solved, in several real-world examples. However, there is still a long way to go before implementations match the theoretical possibilities."

- axiom.bib -

@article\{Jeff04,
author $=$ "Jeffrey, D. J. and Norman, A. C.",

```
    title = "Not Seeing the Roots for the Branches: Multivalued Functions in
            Computer Algebra",
    journal = "SIGSAM Bull.",
    issue_date = "September 2004",
    volume = "38",
    number = "3",
    month = "September",
    year = "2004",
    issn = "0163-5824",
    pages = "57--66",
    numpages = "10",
    url = "http://doi.acm.org/10.1145/1040034.1040036",
    doi = "10.1145/1040034.1040036",
    acmid = "1040036",
    publisher = "ACM",
    address = "New York, NY, USA",
    paper = "Jeff04.pdf",
    abstract = "
    We discuss the multiple definitions of multivalued functions and their
    suitability for computer algebra systems. We focus the discussion by
    taking one specific problem and considering how it is solved using
    different definitions. Our example problem is the classical one of
    calculating the roots of a cubic polynomial from the Cardano formulae,
    which contains fractional powers. We show that some definitions of
    these functions result in formulae that are correct only in the sense
    that they give candidates for solutions; these candidates must then be
    tested. Formulae that are based on single-valued functions, in
    contract, are efficient and direct."
}
```

 - axiom.bib -
 @inproceedings\{Kaha86,
author = "Kahan, W.",
title = "Branch cuts for complex elementary functions",
booktitle = "The State of the Art in Numerical Analysis",
year = "1986",
month = "April",
editor $=$ "Powell, M.J.D and Iserles, A.",
publisher = "Oxford University Press"
\}

- axiom.bib -

```
@article{Rich96,
    author = "Rich, Albert D. and Jeffrey, David J.",
    title = "Function Evaluation on Branch Cuts",
    journal = "SIGSAM Bull.",
    issue_date = "June 1996",
    volume = "30",
    number = "2",
    month = "June",
    year = "1996",
    issn = "0163-5824",
    pages = "25--27",
    numpages = "3",
    url = "http://doi.acm.org/10.1145/235699.235704",
    doi = "10.1145/235699.235704",
    acmid = "235704",
    publisher = "ACM",
    address = "New York, NY, USA",
    abstract = "
        Once it is decided that a CAS will evaluate multivalued functions on
        their principal branches, questions arise concerning the branch
        definitions. The first questions concern the standardization of the
        positions of the branch cuts. These questions have largely been
        resolved between the various algebra systems and the numerical
        libraries, although not completely. In contrast to the computer
        systems, many mathematical textbooks are much further behind: for
        example, many popular textbooks still specify that the argument of a
        complex number lies between 0 and $2\pi$. We do not intend to discuss
        these first questions here, however. Once the positions of the branch
        cuts have been fixed, a second set of questions arises concerning the
        evaluation of functions on their branch cuts."
}
```

- axiom.bib -

```
@article{Patt96,
    author = "Patton, Charles M.",
    title = "A Representation of Branch-cut Information",
    journal = "SIGSAM Bull.",
    issue_date = "June 1996",
    volume = "30",
    number = "2",
    month = "June",
    year = "1996",
```

```
    issn = "0163-5824",
    pages = "21--24",
    numpages = "4",
    url = "http://doi.acm.org/10.1145/235699.235703",
    doi = "10.1145/235699.235703",
    acmid = "235703",
    publisher = "ACM",
    address = "New York, NY, USA",
    paper = "Patt96.pdf",
    abstract = "
        Handling (possibly) multi-valued functions is a problem in all current
        computer algebra systems. The problem is not an issue of technology.
        Its solution, however, is tied to a uniform handling of the issues by
        the mathematics community."
}
```

— axiom.bib -
@article\{Squi91,
author = "Squire, Jon S.",
title = "Rationale for the Proposed Standard for a Generic Package of
Complex Elementary Functions",
journal = "Ada Lett.",
issue_date = "Fall 1991",
volume = "XI",
number = "7",
month = "September",
year = "1991",
issn = "1094-3641",
pages = "166--179",
numpages = "14",
url = "http://doi.acm.org/10.1145/123533.123545",
doi $=$ "10.1145/123533.123545",
acmid = "123545",
publisher = "ACM",
address $=$ "New York, NY, USA",
paper $=$ "Squi91.pdf",
abstract = "
This document provides the background on decisions that were made
during the development of the specification for Generic Complex
Elementary fuctions. It also rovides some information that was used to
develop error bounds, range, domain and definitions of complex
elementary functions."
\}

- axiom.bib -

```
@article{Squi91a,
    editor = "Squire, Jon S.",
    title = "Proposed Standard for a Generic Package of Complex
                Elementary Functions",
    journal = "Ada Lett.",
    issue_date = "Fall 1991",
    volume = "XI",
    number = "7",
    month = "September",
    year = "1991",
    issn = "1094-3641",
    pages = "140--165",
    numpages = "26",
    url = "http://doi.acm.org/10.1145/123533.123544",
    doi = "10.1145/123533.123544",
    acmid = "123544",
    publisher = "ACM",
    address = "New York, NY, USA",
    abstract = "
        This document defines the specification of a generic package of
        complex elementary functions called Generic Complex Elementary
        Functions. It does not provide the body of the package."
}
```


2.31 Square-free Decomposition

- axiom.bib -

```
@article{Bern97,
    author = "Bernardin, Laurent",
    title = "On square-free factorization of multivariate polynomials over a
                finite field",
    journal = "Theoretical Computer Science",
    volume = "187",
    number = "1-2",
    year = "1997",
    month = "November",
    pages = "105-116",
    keywords = "axiomref",
```

```
    paper = "Bern97.pdf",
    abstract = "
    In this paper we present a new deterministic algorithm for computing
    the square-free decomposition of multivariate polynomials with
    coefficients from a finite field.
    Our algorithm is based on Yun's square-free factorization algorithm
    for characteristic 0. The new algorithm is more efficient than
    existing, deterministic algorithms based on Musser's squarefree
    algorithm
    We will show that the modular approach presented by Yun has no
    significant performance advantage over our algorithm. The new
    algorithm is also simpler to implement and it can rely on any existing
    GCD algorithm without having to worry about choosing ''good'' evaluation
    points.
    To demonstrate this, we present some timings using implementations in
    Maple (Char et al. 1991), where the new algorithm is used for Release
    4 onwards, and Axiom (Jenks and Sutor, 1992) which is the only system
    known to the author to use and implementation of Yun's modular
    algorithm mentioned above."
}
```

- axiom.bib -
@article\{Chez07,
author $=$ "Ch\'eze, Guillaume and Lecerf, Gr\'egoire",
title = "Lifting and recombination techniques for absolute factorization",
journal = "Journal of Complexity",
volume = "23",
number = "3",
year = "2007",
month = "June",
pages = "380-420",
paper = "Chez07.pdf",
abstract = "
In the vein of recent algorithmic advances in polynomial factorization
based on lifting and recombination techniques, we present new faster
algorithms for computing the absolute factorization of a bivariate
polynomial. The running time of our probabilistic algorithm is less
than quadratic in the dense size of the polynomial to be factored."
\}

- axiom.bib -

```
@article{Lece07,
    author = "Lecerf, Gr\'egoire",
    title = "Improved dense multivariate polynomial factorization algorithms",
    journal = "Journal of Symbolic Computation",
    volume = "42",
    number = "4",
    year = "2007",
    month = "April",
    pages = "477-494",
    paper = "Lece07.pdf",
    abstract = "
        We present new deterministic and probabilistic algorithms that reduce
        the factorization of dense polynomials from several variables to one
        variable. The deterministic algorithm runs in sub-quadratic time in
        the dense size of the input polynomial, and the probabilistic
        algorithm is softly optimal when the number of variables is at least
        three. We also investigate the reduction from several to two variables
        and improve the quantitative versions of Bertini's irreducibility theorem."
}
```

- axiom.bib -

```
@article{Wang77,
    author = "Wang, Paul S.",
    title = "An efficient squarefree decomposition algorithm",
    journal = "ACM SIGSAM Bulletin",
    volume = "11",
    number = "2",
    year = "1977",
    month = "May",
    pages = "4-6",
    paper = "Wang77.pdf",
    abstract = "
        The concept of polynomial squarefree decomposition is an important one
        in algebraic computation. The squarefree decomposition process has
        many uses in computer symbolic computation. A recent survey by D. Yun
        [3] describes many useful algorithms for this purpose. All of these
        methods depend on computing the greated common divisor (gcd) of the
        polynomial to be decomposed and its first derivative (with repect to
        some variable). In the multivariate case, this gcd computation is
        non-trivial and dominates the cost for the squarefree decompostion."
}
```

— axiom.bib -

```
@article{Wang79,
    author = "Wang, Paul S. and Trager, Barry M.",
    title = "New Algorithms for Polynomial Square-Free Decomposition
            over the Integers",
    journal = "SIAM Journal on Computing",
    volume = "8",
    number = "3",
    year = "1979",
    publisher = "Society for Industrial and Applied Mathematics",
    issn = "00975397",
    paper = "Wang79.pdf",
    abstract = "
        Previously known algorithms for polynomial square-free decomposition
        rely on greatest common divisor (gcd) computations over the same
        coefficient domain where the decomposition is to be performed. In
        particular, gcd of the given polynomial and its first derivative (with
        respect to some variable) is obtained to begin with. Application of
        modular homomorphism and $p$-adic construction (multivariate case) or
        the Chinese remainder algorithm (univariate case) results in new
        square-free decomposition algorithms which, generally speaking, take
        less time than a single gcd between the given polynomial and its first
        derivative. The key idea is to obtain one or several ''correct',
        homomorphic images of the desired square-free decomposition
        first. This provides information as to how many different square-free
        factors there are, their multiplicities and their homomorphic
        images. Since the multiplicities are known, only the square-free
        factors need to be constructed. Thus, these new algorithms are
        relatively insensitive to the multiplicities of the square-free factors."
}
```

 — axiom.bib -
 @inproceedings\{Yun76,
author $=$ "Yun, D.Y.Y",
title = "On square-free decomposition algorithms",
booktitle = "Proceedings of SYMSAC'76",
year = "1976",
keywords = "survey",
pages = "26-35"
\}

2.32 Symbolic Summation

\qquad
@article\{Abra71,
author = "Abramov, S.A.",
title $=$ "On the summation of rational functions",
year = "1971",
journal = "USSR Computational Mathematics and Mathematical Physics",
volume = "11",
number = "4",
pages = "324--330",
paper = "Abra71.pdf",
abstract = "
An algorithm is given for solving the following problem: let
\$F(x_1, ···, $\left.x_{-} n\right) \$$ be a rational function of the variables
\$x_i\$ with rational (read or complex) coefficients; to see if there exists a rational function $\$ \mathrm{G}\left(\mathrm{v}, \mathrm{w}, \mathrm{x} _2, \backslash l d o t s, \mathrm{x} _\mathrm{n}\right) \$$ with coefficients from the same field, such that
$\backslash\left[\backslash\right.$ sum_ $\left.\left\{\mathrm{x}_{-} 1=\mathrm{v}\right\}^{\wedge} \mathrm{w}\left\{\mathrm{F}\left(\mathrm{x}_{-} 1, \backslash \operatorname{ldots,} \mathrm{x}_{-} \mathrm{n}\right)\right\}=\mathrm{G}\left(\mathrm{v}, \mathrm{w}, \mathrm{x}_{-} 2, \backslash l \operatorname{dots}, \mathrm{x} _\mathrm{n}\right) \backslash\right]$ for all integral values of $\$ v$ \le $w \$$. If $\$ G \$$ exists, to obtain it. Realization of the algorithm in the LISP language is discussed."
\}

- axiom.bib -

```
@article{Gosp78,
    author = "Gosper, R. William",
    title = "Decision procedure for indefinite hypergeometric summation",
    year = "1978",
    journal = "Proc. Natl. Acad. Sci. USA",
    volume = "75",
    number = "1",
    pages = "40--42",
    month = "January",
    paper = "Gosp78.pdf",
    abstract = "
        Given a summand $a_n$, we seek the ''indefinite sum'' $S(n)$
        determined (within an additive constant) by
        \[\sum_{n=1}^m{a_n} = S(m)=S(0)\]
        or, equivalently, by
```

```
\[a_n=S(n)-S(n-1)\]
An algorithm is exhibited which, given $a_n$, finds those $S(n)$
with the property
\[\displaystyle\frac{S(n)}{S(n-1)}=\textrm{a rational function of n}\]
With this algorithm, we can determine, for example, the three
identities
\[\displaystyle\sum_{n=1}^m{
\frac{\displaystyle\prod_{j=1}^{n-1}{bj^2+cj+d}}
{\displaystyle\prod_{j=1}^n{bj^2+cj+e}}=
\frac{1-{\displaystyle\prod_{j=1}^m{\frac{bj^2+cj+d}{bj^2+cj+e}}}}{{e-d}}\]
\[\displaystyle\sum_{n=1}`m{
\frac{\displaystyle\prod_{j=1}^{n-1}{aj^3+bj^2+cj+d}}
    {\displaystyle\prod_{j=1}^n{aj^3+bj^2+cj+e}}=
\frac{1-{\displaystyle\prod_{j=1}^m{
\frac{aj^3+bj^2+cj+d}{aj^3+bj^2+cj+e}}}}}{e-d}}\]
\[\displaystyle\sum_{n=1}^m{
\displaystyle\frac{\displaystyle\prod_{j=1}^{n-1}{bj^2+cj+d}}
{\displaystyle\prod_{j=1}^{n+1}{bj^2+cj+e}}=
\displaystyle\frac{
\displaystyle\frac{2b}{e-d}-
\displaystyle\frac{3b+c+d-e}{b+c+e}-
\left(
\displaystyle\frac{2b}{e-d}-\frac{b(2m+3)+c+d-e}{b(m+1)^2+c(m+1)+e}
\right)
\displaystyle\prod_{j=1}^m{\frac{bj^2+cj+d}{bj^2+cj+e}}}
{b^2-c^2+d^2+e^2+2bd-2de+2eb}}\]"
```

\}
— axiom.bib -
@article\{Karr81,
author = "Karr, Michael",
title = "Summation in Finite Terms",
journal = "Journal Association for Computing Machinery",
year = "1981",
volume = "28",
number = "2",
month = "April",
issn = "0004-5411",
pages = "305--350",
url = "http://doi.acm.org/10.1145/322248.322255",
publisher = "ACM",
paper = "Karr81",
abstract = "
Results which allow either the computation of symbolic solutions to
first-order linear difference equations or the determination that

```
    solutions of a certain form do not exist are presented. Starting with
    a field of constants, larger fields may be constructed by the formal
    adjunction of symbols which behave like solutions to first-order
    linear equations (with a few restrictions). It is in these extension
    fields that the difference equations may be posed and in which the
    solutions are requested. The principal application of these results is
    in finding formulas for a broad class of finite sums or in showing the
    nonexistence of such formula."
}
```

- axiom.bib -

```
@book{Lafo82,
    author = "Lafon, J.C.",
    title = "Summation in Finite Terms",
    year = "1982",
    publisher = "Springer-Verlag",
    isbn = "3-211-81776-X",
    pages = "71--77",
    keywords = "axiomref,survey",
    abstract = "
        A survey on algorithms for summation in finite terms is given. After a
        precise definition of the problem the cases of polynomial and rational
        summands are treated. The main concern of this paper is a description
        of Gosper's algorithm, which is applicable for a wide class of
        summands. Karr's theory of extension difference fields and some
        heuristic techniques are touched on briefly."
}
```


- axiom.bib -

@article\{Abra85,
author = "Abramov, S.A.",
title $=$ "Separation of variables in rational functions",
year = "1985",
journal = "USSR Computational Mathematics and Mathematical Physics",
volume = "25",
number $=$ " $5 "$,
pages = "99--102",
paper = "Abra85.pdf",
abstract = "
The problem of expanding a rational function of several variables into

```
terms with separable variables is formulated. An algorithm for solving
this problem is given. Programs which implement this algorithm can
occur in sets of algebraic alphabetical transformations on a computer
and can be used to reduce the multiplicity of sums and integrals of
rational functions for investigating differential equations with
rational right-hand sides etc."
}
```

— axiom.bib -
@Article\{Karr85,
author = "Karr, Michael",
title = "Theory of Summation in Finite Terms",
year = "1985",
journal = "Journal of Symbolic Computation",
volume = "1",
number = " 3 ",
month = "September",
pages = "303-315",
paper = "Karr85.pdf",
abstract = "
This paper discusses some of the mathematical aspects of an algorithm
for finding formulas for finite sums. The results presented here
concern a property of difference fields which show that the algorithm
does not divide by zero, and an analogue to Liouville's theorem on
elementary integrals."
\}
— axiom.bib -
@book\{Koep98,
author = "Koepf, Wolfram",
title = "Hypergeometric Summation",
publisher = "Springer",
year = "1998",
isbn = "978-1-4471-6464-7",
paper $=$ "Koep98.pdf",
abstract = "
Modern algorithmic techniques for summation, most of which were
introduced in the 1990s, are developed here and carefully implemented
in the computer algebra system Maple.

The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovsek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book.

The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given.

The materials covered are sutiable for an introductory course on algorithmic summation and will appeal to students and researchers alike."

— axiom.bib -

@InProceedings\{Schn00,
author = "Schneider, Carsten", title = "An implementation of Karr's summation algorithm in Mathematica", year = "2000",
booktitle = "S\’eminaire Lotharingien de Combinatoire",
volume = "S43b",
pages = "1-10",
url = "",
paper = "Schn00.pdf",
abstract = '
Implementations of the celebrated Gosper algorithm (1978) for indefinite summation are available on almost any computer algebra platform. We report here about an implementation of an algorithm by Karr, the most general indefinite summation algorithm known. Karr's algorithm is, in a sense, the summation counterpart of Risch's algorithm for indefinite integration. This is the first implementation of this algorithm in a major computer algebra system. Our version contains new extensions to handle also definite summation problems. In addition we provide a feature to find automatically appropriate difference field extensions in which a closed form for the summation problem exists. These new aspects are illustrated by a variety of examples."

- axiom.bib -

```
@phdthesis{Schn01,
    author = "Schneider, Carsten",
    title = "Symbolic Summation in Difference Fields",
    school = "RISC Research Institute for Symbolic Computation",
    year = "2001",
    url =
        "http://www.risc.jku.at/publications/download/risc_3017/SymbSumTHESIS.pdf",
    paper = "Schn01.pdf",
    abstract = "
```

There are implementations of the celebrated Gosper algorithm (1978) on almost any computer algebra platform. Within my PhD thesis work I implemented Karr's Summation Algorithm (1981) based on difference field theory in the Mathematica system. Karr's algorithm is, in a sense, the summation counterpart of Risch's algorithm for indefinite integration. Besides Karr's algorithm which allows us to find closed forms for a big clas of multisums, we developed new extensions to handle also definite summation problems. More precisely we are able to apply creative telescoping in a very general difference field setting and are capable of solving linear recurrences in its context.

Besides this we find significant new insights in symbolic summation by rephrasing the summation problems in the general difference field setting. In particular, we designed algorithms for finding appropriate difference field extensions to solve problems in symbolic summation. For instance we deal with the problem to find all nested sum extensions which provide us with additional solutions for a given linear recurrence of any order. Furthermore we find appropriate sum extensions, if they exist, to simplify nested sums to simpler nested sum expressions. Moreover we are able to interpret creative telescoping as a special case of sum extensions in an indefinite summation problem. In particular we are able to determine sum extensions, in case of existence, to reduce the order of a recurrence for a definite summation problem."
\}
— axiom.bib -
©inproceedings\{Gerh03,
author = "Gerhard, J. and Giesbrecht, M. and Storjohann, A. and Zima, E.V.", title = "Shiftless decomposition and polynomial-time rational summation", booktitle $=$ "Proceedings of ISSAC'03",

```
    year = "2003",
    pages = "119--126",
    paper = "Gerh03.pdf",
    abstract = "
    New algorithms are presented for computing the dispersion set of two
    polynomials over {\bf Q} and for {\sl shiftless} factorization. Together
    with a summability criterion by Abramov, these are applied to get a
    polynomial-time algorithm for indefinite rational summation, using a
    sparse representation of the output."
}
```

_ axiom.bib -

```
@article{Schn05,
    author = "Schneider, Carsten",
    title = "A new Sigma approach to multi-summation",
    year = "2005",
    journal = "Advances in Applied Mathematics",
    volume = "34",
    number = "4",
    pages = "740--767",
    paper = "Schn05.pdf",
    abstract = "
        We present a general algorithmic framework that allows not only to
        deal with summation problems over summands being rational expressions
        in indefinite nested syms and products (Karr, 1981), but also over
        $\delta$-finite and holonomic summand expressions that are given by a
        linear recurrence. This approach implies new computer algebra tools
        implemented in Sigma to solve multi-summation problems efficiently.
        For instacne, the extended Sigma package has been applied successively
        to provide a computer-assisted proof of Stembridge's TSPP Theorem."
}
```


- axiom.bib -

@article\{Kaue08,
author = "Kauers, Manuel and Schneider, Carsten",
title = "Indefinite summation with unspecified summands",
year = "2006",
journal = "Discrete Mathematics",
volume = "306",
number = "17",

```
    pages = "2073--2083",
    paper = "Kaue80.pdf",
    abstract = "
    We provide a new algorithm for indefinite nested summation which is
    applicable to summands involving unspecified sequences $x (n)$. More
    than that, we show how to extend Karr's algorithm to a general
    summation framework by which additional types of summand expressions
    can be handled. Our treatment of unspecified sequences can be seen as
    a first illustrative application of this approach."
}
```

 — axiom.bib -
    ```
@article{Kaue07,
    author = "Kauers, Manuel",
    title = "Summation algorithms for Stirling number identities",
    year = "2007",
    journal = "Journal of Symbolic Computation",
    volume = "42",
    number = "10",
    month = "October",
    pages = "948--970",
    paper = "Kaue07.pdf",
    abstract = "
        We consider a class of sequences defined by triangular recurrence
        equations. This class contains Stirling numbers and Eulerian numbers
        of both kinds, and hypergeometric multiples of those. We give a
        sufficient criterion for sums over such sequences to obey a recurrence
        equation, and present algorithms for computing such recurrence
        equations efficiently. Our algorithms can be used for verifying many
        known summation identities on Stirling numbers instantly, and also for
        discovering new identities."
}
```

 - axiom.bib -
 @InProceedings\{Schn07,
author = "Schneider, Carsten",
title = "Symbolic Summation Assists Combinatorics",
year = "2007",
booktitle = "S\'eminaire Lotharingien de Combinatoire",
volume = "56",

```
    article = "B56b",
    url = "",
    paper = "Schn07.pdf",
    abstract = "
    We present symbolic summation tools in the context of difference
    fields that help scientists in practical problem solving. Throughout
    this article we present multi-sum examples which are related to
    combinatorial problems."
}
```

- axiom.bib -

```
@article{Schn08,
    author = "Schneider, Carsten",
    title = "A refined difference field theory for symbolic summation",
    year = "2008",
    journal = "Journal of Symbolic Computation",
    volume = "43",
    number = "9",
    pages = "611--644",
    paper = "Schn08.pdf",
    abstract = "
        In this article we present a refined summation theory based on Karr's
        difference field approach. The resulting algorithms find sum
        representations with optimal nested depth. For instance, the
        algorithms have been applied successively to evaluate Feynman
        integrals from Perturbative Quantum Field Theory"
}
```

 - axiom.bib -
 @article\{Schn09,
author = "Schneider, Carsten",
title = "Structural theorems for symbolic summation",
journal = "Proc. AAECC-2010",
year = "2010",
volume = "21",
pages = "1--32",
paper = "Schn09.pdf",
abstract = "
Starting with Karr's structural theorem for summation - the discrete
version of Liouville's structural theorem for integration - we work

```
    out crucial properties of the underlying difference fields. This leads
    to new and constructive structural theorems for symbolic summation.
    E.g., these results can be applied for harmonic sums which arise
    frequently in particle physics."
}
```

- axiom.bib -
@article\{Eroc10,
author $=\{$ Er \backslash "ocal, Bur $\backslash c\{c\}$ in\},
title = "Summation in Finite Terms Using Sage",
journal = "ACM Commun. Comput. Algebra",
volume = "44",
number = " $3 / 4$ ",
month = "January",
year = "2011"
issn = "1932-2240",
pages = "190--193",
url = "http://doi.acm.org/10.1145/1940475.1940517",
publisher = "ACM",
paper = "Eroc10.pdf",
abstract = "

The summation analogue of the Risch integration algorithm developed by Karr uses towers of difference fields to model nested indefinite sums and products, as the Risch algorithm uses towers of differential fields to model the so called $\{\backslash$ sl elementary functions\}. The algorithmic machinery developed by Karr, and later generalized and extended, allows one to find solutions of first order difference equations over such towers of difference fields, in turn simplifying expressions involving sums and products.

We present an implementation of this machinery in the open source computer algebra system Sage. Due to the nature of open source software, this allows direct experimentation with the algorithms and structures involved while taking advantage of the state of the art primitives provided by Sage. Even though these methods are used behind the scenes in the summation package Sigma and they were previously implemented, this is the first open source implementation."
\}

```
@phdthesis{Eroc11,
    author = {Er\"ocal, Bur\c{c}in},
    title = "Algebraic Extensions for Symbolic Summation",
    school = "RISC Research Institute for Symbolic Computation",
    year = "2011",
    url =
        "http://www.risc.jku.at/publications/download/risc_4320/erocal_thesis.pdf",
    paper = "Eroc11.pdf",
    abstract = "
The main result of this thesis is an effective method to extend Karr's symbolic summation framework to algebraic extensions. These arise, for example, when working with expressions involving \$(-1) n \(\$\). An implementation of this method, including a modernised version of Karr's algorithm is presented.
Karr's algorithm is the summation analogue of the Risch algorithm for indefinite integration. In the summation case, towers of specialized difference fields called \$\prod\sum\$-fields are used to model nested sums and products. This is similar to the way elementary functions involving nested logarithms and exponentials are represented in differential fields in the integration case.
In contrast to the integration framework, only transcendental extensions are allowed in Karr's construction. Algebraic extensions of \$\prod\sum\$-fields can even be rings with zero divisors. Karr's methods rely heavily on the ability to solve first-order linear difference equations and they are no longer applicable over these rings.
Based on Bronstein's formulation of a method used by Singer for the solution of differential equations over algebraic extensions, we transform a first-order linear equation over an algebraic extension to a system of first-order equations over a purely transcendental extension field. However, this domain is not necessarily a
\$\prod\sum\$-field. Using a structure theorem by Singer and van der Put, we reduce this system to a single first-order equation over a \(\$ \backslash p r o d \backslash s u m \$-f i e l d\), which can be solved by Karr's algorithm. We also describe how to construct towers of difference ring extensions on an algebraic extension, where the same reduction methods can be used.
A common bottleneck for symbolic summation algorithms is the computation of nullspaces of matrices over rational function fields. We present a fast algorithm for matrices over \(\$ \backslash\) mathbb\{Q\} (x) \$ which uses fast arithmetic at the hardware level with calls to BLAS subroutines after modular reduction. This part is joint work with Arne Storjohann."
— axiom.bib -
```

@article{Poly11,
author = "Polyadov, S.P.",
title = "Indefinite summation of rational functions with factorization
of denominators",
year = "2011",
month = "November",
journal = "Programming and Computer Software",
volume = "37",
number = "6",
pages = "322--325",
paper = "Poly11.pdf",
abstract = "
A computer algebra algorithm for indefinite summation of rational
functions based on complete factorization of denominators is
proposed. For a given f, the algorithm finds two rational functions
g, r such that $f=g(x+1)-g(x)+r$ and the degree of the denominator
of r is minimal. A modification of the algorithm is also proposed
that additionally minimizes the degree of the denominator of
g. Computational complexity of the algorithms without regard to
denominator factorization is shown to be $O(m^2)$, where m is the
degree of the denominator of f."
}

```
— axiom.bib -
```

@article{Schn13,
author = "Schneider, Carsten",
title =
"Fast Algorithms for Refined Parameterized Telescoping in Difference Fields",
journal = "CoRR",
year = "2013",
volume = "abs/1307.7887",
paper = "Schn13.pdf",
keywords = "survey",
abstract = "
Parameterized telescoping (including telescoping and creative
telescoping) and refined versions of it play a central role in the
research area of symbolic summation. In 1981 Karr introduced
$\prod\sum$-fields, a general class of difference fields, that enables
one to consider this problem for indefinite nested sums and products
covering as special cases, e.g., the (q-)hypergeometric case and their

```
```

 mixed versions. This survey article presents the available algorithms
 in the framework of $\prod\sum$-extensions and elaborates new results
 concerning efficiency."
 }

```

\section*{- axiom.bib -}
```

@article{Zima13,
author = "Zima, Eugene V.",
title = "Accelerating Indefinite Summation: Simple Classes of Summands",
journal = "Mathematics in Computer Science",
year = "2013",
month = "December",
volume = "7",
number = "4",
pages = "455--472",
paper = "Zima13.pdf",
abstract = '
We present the history of indefinite summation starting with classics
(Newton, Montmort, Taylor, Stirling, Euler, Boole, Jordan) followed by
modern classics (Abramov, Gosper, Karr) to the current implementation
in computer algebra system Maple. Along with historical presentation
we describe several ''acceleration techniques'' of algorithms for
indefinite summation which offer not only theoretical but also
practical improvements in running time. Implementations of these
algorithms in Maple are compared to standard Maple summation tools"
}

```
                    - axiom.bib -
@misc\{Schn14,
    author = "Schneider, Carsten",
    title = "A Difference Ring Theory for Symbolic Summation",
    year = "2014",
    paper = "Schn14.pdf",
    abstract = "
        A summation framework is developed that enhances Karr's difference
        field approach. It covers not only indefinite nested sums and products
        in terms of transcendental extensions, but it can treat, e.g., nested
        products defined over roots of unity. The theory of the so-called

        construction of such difference rings automatically and that assist in
the task to tackle symbolic summation problems. Algorithms are presented that solve parameterized telescoping equations, and more generally parameterized first-order difference equations, in the given difference ring. As a consequence, one obtains algorithms for the summation paradigms of telescoping and Zeilberger's creative telescoping. With this difference ring theory one obtains a rigorous summation machinery that has been applied to numerous challenging problems coming, e.g., from combinatorics and particle physics." \}
— axiom.bib -
@phdthesis\{Vazq14,
author = "Vazquez-Trejo, Javier",
title = "Symbolic Summation in Difference Fields", year = "2014",
school = "Carnegie-Mellon University",
paper = "Vazq14.pdf",
abstract = "
We seek to understand a general method for finding a closed form for a given sum that acts as its antidifference in the same way that an integral has an antiderivative. Once an antidifference is found, then given the limits of the sum, it suffices to evaluate the antidifference at the given limits. Several algorithms (by Karr and Schneider) exist to find antidifferences, but the apers describing these algorithms leave out several of the key proofs needed to implement the algorithms. We attempt to fill in these gaps and find that many of the steps to solve difference equations rely on being able to solve two problems: the equivalence problem and the homogenous group membership problem. Solving these two problems is essential to finding the polynomial degree bounds and denominator bounds for solutions of difference equations. We study Karr and Schneider's treatment of these problems and elaborate on the unproven parts of their work. Section 1 provides background material; section 2 provides motivation and previous work; Section 3 provides an outline of Karr's Algorithm; section 4 examines the Equivalance Problem, and section 5 examines the Homogeneous Group Membership Problem. Section 6 presents some proofs for the denominator and polynomial bounds used in solving difference equations, and Section 7 gives some directions for future work."
```

 _ axiom.bib -
 @book{Petk97,
author = "Petkov\v{s}ek, Marko and Wilf, Herbert S. and
Zeilberger, Doran",
title = "A=B",
publisher = "A.K. Peters, Ltd",
year = "1997",
paper = "Petk97.pdf"
}

```
- axiom.bib -
@misc\{Temm14,
    author \(=\) "Temme, N.M.",
    title = "Bernoulli Polynomials Old and New",
    paper = "Temm14.pdf",
    abstract = "
        We consider two problems on generalized Bernoulli polynomials
        \$B_n^u(z)\$. One is connected with defining functions instead of
        polynomials by making the degree \(\$ \mathrm{n} \$\) of the polynomial a complex
        variable. In the second problem we are concerned with the asymptotic
        behaviour of \(\$ B_{-} n^{\wedge} u(z) \$\) when the degree \(\$ n \$\) tends to infinity."
\(\}\)

\subsection*{2.33 Differential Forms}

> — axiom.bib -
@book\{Cart06,
author \(=\{\) Cartan, Henri\},
title = \{Differential Forms\},
year = "2006",
location = \{Mineola, N.Y\},
edition = \{Auflage: Tra\},
isbn \(=\) \{9780486450100\},
pagetotal = \{166\},
publisher = \{Dover Pubn Inc\},
```

 date = {2006-05-26}
 }

```
\(\qquad\)
- axiom.bib -
@book\{Flan03, author = "Flanders, Harley", title = "Differential Forms with Applications to the Physical Sciences", year = "2003", location = "Mineola, N.Y", isbn = "9780486661698", pagetotal = "240", publisher = "Dover Pubn Inc", date = "2003-03-28", comment = "documentation for DeRhamComplex"
\}
— axiom.bib -
@book\{Whit12,
author \(=\) \{Whitney, Hassler\}, title =
\{Geometric Integration Theory: Princeton Mathematical Series, No. 21\}, year = "2012",
isbn = \{9781258346386\},
shorttitle \(=\) \{Geometric Integration Theory\}, pagetotal \(=\{402\}\), publisher \(=\) \{Literary Licensing, \{LLC\}\}, date \(=\) \{2012-05-01\}
\}
- axiom.bib -
@book\{Fede13,
author \(=\) \{Federer, Herbert \(\}\), title = \{Geometric Measure Theory\},
```

 year = "2013",
 location = {Berlin ; New York},
 edition = {Reprint of the 1st ed. Berlin, Heidelberg, New York 1969},
 isbn = {9783540606567},
 pagetotal = {700},
 publisher = {Springer},
 date = {2013-10-04},
 abstract =
 "This book is a major treatise in mathematics and is essential in the
 working library of the modern analyst. (Bulletin of the London
 Mathematical Society)"
 }

```
- axiom.bib -
@book\{Abra93,
author = "Abraham, Ralph and Marsden, Jerrold E. and Ratiu, Tudor",
    title = "Manifolds, Tensor Analysis, and Applications",
    year = "1993",
    location = "New York",
    edition \(=\) "2nd Corrected ed. 1988. Corr. 2nd printing 1993",
    isbn = "9780387967905",
    pagetotal = "656",
    publisher = "Springer",
    date = "1993-08-26",
    abstract = "
        The purpose of this book is to provide core material in nonlinear
        analysis for mathematicians, physicists, engineers, and mathematical
        biologists. The main goal is to provide a working knowledge of
        manifolds, dynamical systems, tensors, and differential forms. Some
        applications to Hamiltonian mechanics, fluid mechanics,
        electromagnetism, plasma dynamics and control theory are given using
        both invariant and index notation. The prerequisites required are
        solid undergraduate courses in linear algebra and advanced calculus."
\}
- axiom.bib -
@book\{Lamb97,
author = \{Lambe, L. A. and Radford, D. E.\},
title \(=\{\) Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach\},
```

 year = "1997",
 location = {Dordrecht ; Boston},
 edition = {Auflage: 1997},
 isbn = {9780792347217},
 shorttitle = {Introduction to the Quantum Yang-Baxter Equation and
 Quantum Groups},
 abstract = {
 Chapter 1 The algebraic prerequisites for the book are covered here
 and in the appendix. This chapter should be used as reference material
 and should be consulted as needed. A systematic treatment of algebras,
 coalgebras, bialgebras, Hopf algebras, and represen tations of these
 objects to the extent needed for the book is given. The material here
 not specifically cited can be found for the most part in [Sweedler,
 1969] in one form or another, with a few exceptions. A great deal of
 emphasis is placed on the coalgebra which is the dual of n x n
 matrices over a field. This is the most basic example of a coalgebra
 for our purposes and is at the heart of most algebraic constructions
 described in this book. We have found pointed bialgebras useful in
 connection with solving the quantum Yang-Baxter equation. For this
 reason we develop their theory in some detail. The class of examples
 described in Chapter 6 in connection with the quantum double consists
 of pointed Hopf algebras. We note the quantized enveloping algebras
 described Hopf algebras. Thus for many reasons pointed bialgebras are
 elsewhere are pointed of fundamental interest in the study of the
 quantum Yang-Baxter equation and objects quantum groups.},
 pagetotal = {300},
 publisher = {Springer},
 date = {1997-10-31}
 }

```
— axiom.bib -
@misc\{Whee12,
    author = "Wheeler, James T.",
    title = "Differential Forms",
    year = "2012",
    month = "September",
    url =
"http://www.physics.usu.edu/Wheeler/ClassicalMechanics/CMDifferentialForms.pdf",
    paper \(=\) "Whee12.pdf"
\}

\subsection*{2.34 To Be Classified}
- axiom.bib -
@InProceedings\{Kalt83,
author = "Kaltofen, E.",
title \(=\) "On the complexity of finding short vectors in integer lattices",
booktitle = "Proc. EUROCAL '83",
series = "Lect. Notes Comput. Sci.",
year = "1983",
volume = "162",
pages = "236--244",
publisher = "Springer-Verlag",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/83/Ka83_eurocal.pdf", paper = "Kalt83.pdf",
\}
- axiom.bib -
@InProceedings\{Kalt85,
author = "Kaltofen, E.",
title = "Effective \{Hilbert\} Irreducibility",
booktitle = "Proc. EUROSAM '84",
pages = "275--284",
crossref = "EUROSAM84",
year = "1985",
url =
"http://www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_infcontr.ps.gz", paper = "Kalt85.ps",
\}
- axiom.bib -
@TechReport\{Kalt85c,
author = "Kaltofen, E.",
title = "Sparse Hensel lifting",
institution = "RPI",
address = "Dept. Comput. Sci., Troy, N. Y.",
year = "1985",
number \(=\) " \(85-12 "\),
```

 url = "http://www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_techrep.pdf",
 paper = "Kalt85c.pdf",
 }

```
- axiom.bib -
```

@InProceedings{Kalt85d,
author = "Kaltofen, E.",
title = "Sparse Hensel lifting",
booktitle = "EUROCAL 85 European Conf. Comput. Algebra Proc. Vol. 2",
crossref = "EUROCAL85",
pages = "4--17",
year = "1985",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/85/Ka85_eurocal.pdf",
paper = "Kalt85d.pdf",
}

```
— axiom.bib -
```

@Article{Mill88,
author = "Miller, G.L. and Ramachandran, V. and Kaltofen, E.",
title = "Efficient parallel evaluation of straight-line code and
arithmetic circuits",
journal = "SIAM J. Comput.",
year = "1988",
volume = "17",
number = "4",
pages = "687--695",
url = "http://www.math.ncsu.edu/~}kaltofen/bibliography/88/MRK88.pdf"
paper = "Mill88.pdf",
}

```
- axiom.bib -
@Article\{Greg88,
    author = "Gregory, B.; Kaltofen, E.",
    title = "Analysis of the binary complexity of asymptotically fast
```

 algorithms for linear system solving",
 journal = "SIGSAM Bulletin",
 year = "1988",
 month = "April",
 volume = "22",
 number = "2",
 pages = "41--49",
 url = "http://www.math.ncsu.edu/~kaltofen/bibliography/88/GrKa88.pdf",
 paper = "Grey88.pdf",
 }

```
- axiom.bib -
@Article\{Kalt89a,
    author = "Kaltofen, E.; Rolletschek, H.",
    title = "Computing greatest common divisors and factorizations in
            quadratic number fields",
    journal = "Math. Comput.",
    year = "1989",
    volume = "53",
    number = "188",
    pages \(=\) "697--720",
    url = "http://www.math.ncsu.edu/ \({ }^{\text {kaltofen/bibliography/89/KaRo89.pdf", }}\)
    paper = "Kalt89a.pdf",
\}
- axiom.bib -
@Unpublished\{Kalt89b, author = "Kaltofen, E.",
    title = "Processor efficient parallel computation of polynomial greatest
            common divisors",
    year = "1989",
    month = "July",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/89/Ka89_gcd.ps.gz",
    paper = "Kalt89b.ps",
\}
- axiom.bib -
```

@TechReport{Kalt89c,
author = "Kaltofen, E.",
title = "Parallel Algebraic Algorithm Design",
institution = "RPI",
address = "Dept. Comput. Sci., Troy, New York",
year = "1989",
month = "July",
url =
"http://www.math.ncsu.edu/~kaltofen/bibliography/89/Ka89_parallel.ps.gz",
paper = "Kalt89c.ps",
}

```
    — axiom.bib -
@InProceedings\{Cann89,
    author = "Canny, J. and Kaltofen, E. and Yagati, Lakshman",
    title \(=\) "Solving systems of non-linear polynomial equations faster",
    booktitle = "Proc. 1989 Internat. Symp. Symbolic Algebraic Comput.",
    crossref = "ISSAC89",
    pages = "121--128",
    year = "1989",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/89/CKL89.pdf",
    paper \(=\) "Cann89.pdf",
\}
— axiom.bib -
@Article\{Kalt90b,
    author = "Kaltofen, E.",
    title \(=\) "Computing the irreducible real factors and components of an
            algebraic curve",
    journal = "Applic. Algebra Engin. Commun. Comput.",
    year = "1990",
    volume = "1",
    number = "2",
    pages = "135--148",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/90/Ka90_aaecc.pdf",
    paper \(=\) "Kalt90b.pdf",
\}

\section*{- axiom.bib -}
```

@Article{Kalt90d,
author = "Kaltofen, E.; Trager, B.",
title = "Computing with polynomials given by black boxes for their
evaluations: Greatest common divisors, factorization, separation of
numerators and denominators",
journal = "J. Symbolic Comput.",
year = "1990",
volume = "9",
number = "3",
pages = "301--320",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/90/KaTr90.pdf",
paper = "Kalt90d.pdf",
}

```
- axiom.bib -
```

@InProceedings{Kalt91a,
author = "Kaltofen, E. and Singer, M.F.",
editor = "D. V. Shirkov and V. A. Rostovtsev and V. P. Gerdt",
title = "Size efficient parallel algebraic circuits for partial derivatives",
booktitle =
"IV International Conference on Computer Algebra in Physical Research",
pages = "133--145",
publisher = "World Scientific Publ. Co.",
year = "1991",
address = "Singapore",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/91/KaSi91.pdf",
paper = "Kalt91a.pdf",
}

```
- axiom.bib -
@InProceedings\{Kalt93,
author = "Kaltofen, E.",
title = "Computational Differentiation and Algebraic Complexity Theory", booktitle = "Workshop Report on First Theory Institute on Computational Differentiation",
editor = "C. H. Bischof and A. Griewank and P. M. Khademi",
```

 publisher = "Argonne National Laboratory",
 address = "Argonne, Illinois",
 series = "Tech. Rep.",
 volume = "ANL/MCS-TM-183",
 month = "December",
 year = "1993",
 pages = "28--30",
 url = "http://www.math.ncsu.edu/~kaltofen/bibliography/93/Ka93_diff.pdf",
 paper = "Kalt93.pdf",
 }

```
    — axiom.bib -
@Article\{Kalt93b,
    author = "Kaltofen, E.",
    title = "Direct proof of a theorem by Kalkbrener, Sweedler, and Taylor",
    journal = "SIGSAM Bulletin",
    year = "1993",
    volume = "27",
    number = "4",
    pages = "2",
    url =
            "http://www.math.ncsu.edu/~kaltofen/bibliography/93/Ka93_sambull.ps.gz",
    paper \(=\) "Kalt93b.ps",
\}
- axiom.bib -
@InProceedings\{Kalt94,
    author = "Kaltofen, E. and Pan, V.",
    title = "Parallel solution of Toeplitz and Toeplitz-like linear
                systems over fields of small positive characteristic",
    booktitle = "Proc. First Internat. Symp. Parallel Symbolic Comput.",
    crossref \(=\) "PASCO94",
    pages = "225--233",
    year = "1994",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/94/KaPa94.pdf",
    paper \(=\) "Kalt94.pdf",
\}
- axiom.bib -
```

@InProceedings{Sama95,
author = "Samadani, M. and Kaltofen, E.",
title = "Prediction based task scheduling in distributed computing",
booktitle = "Languages, Compilers and Run-Time Systems for Scalable
Computers",
editor = "B. K. Szymanski and B. Sinharoy",
publisher = "Kluwer Academic Publ.",
address = "Boston",
pages = "317--320",
year = "1996",
url =
"http://www.math.ncsu.edu/~kaltofen/bibliography/95/SaKa95_poster.ps.gz",
paper = "Sama95.ps",
}

```
— axiom.bib -
@InProceedings\{Erli96,
author \(=\) "Erlingsson, U. and Kaltofen, E. and Musser, D.", title = "Generic \{Gram\}-\{Schmidt\} Orthogonalization by Exact Division", booktitle = "Proc. 1996 Internat. Symp. Symbolic Algebraic Comput.", crossref = "ISSAC96", year = "1996", pages = "275--282", url = "http://www.math.ncsu.edu/~kaltofen/bibliography/96/EKM96.pdf", paper = "Erli96.pdf",
\}
— axiom.bib -
@InProceedings\{Kalt96, author \(=\) "Kaltofen, E. and Lobo, A.", title \(=\) "On rank properties of \{Toeplitz\} matrices over finite fields", booktitle = "Proc. 1996 Internat. Symp. Symbolic Algebraic Comput.", crossref = "ISSAC96", year = "1996", pages = "241--249", url = "http://www.math.ncsu.edu/~kaltofen/bibliography/96/KaLo96_issac.pdf",
```

 paper = "Kalt96.pdf",
 }

- axiom.bib -
@Article\{Kalt97,
author = "Kaltofen, E.",
title = "Teaching Computational Abstract Algebra",
journal = "Journal of Symbolic Computation",
volume = "23",
number = "5-6",
pages = "503--515",
year = "1997",
note = "Special issue on education, L. Lambe, editor.",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/97/Ka97_jsc.pdf",
keywords = "axiomref,read",
paper = "Kalt97.pdf",
abstract = "
We report on the contents and pedagogy of a course in abstract algebra
that was taught with the aid of educational software developed within
the Mathematica system. We describe the topics covered and the
didactical use of the corresponding Mathematica packages, as well as
draw conclusions for future such courses from the students' comments
and our own experience."
}

```
— axiom.bib -
```

@Unpublished{Hitz97,
author = "Hitz, M. A. and Kaltofen, E.",
title = "The {Kharitonov} theorem and its applications in symbolic
mathematical computation",
year = "1997",
month = "May",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/97/HiKa97_kharit.pdf",
paper = "Hitz97.pdf",
}

```
- axiom.bib -
```

@InProceedings{Bern99,
author = "Bernardin, L. and Char, B. and Kaltofen, E.",
title = "Symbolic Computation in {Java}: an Appraisement",
booktitle = "Proc. 1999 Internat. Symp. Symbolic Algebraic Comput.",
crossref = "ISSAC99",
year = "1999",
pages = "237--244",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/99/BCK99.pdf",
paper = "Bern99.pdf",
}

```
- axiom.bib -
@InProceedings\{Kalt02,
author = "Kaltofen, Erich and McLean, Michael and Norris, Larry",
title = "'\{Using\} \{Maple\} to Grade \{Maple\}' Assessment Software from \{North Carolina State University\}",
booktitle = "Proceedings 2002 Maple Workshop",
year = "2002",
publisher = "Waterloo Maple Inc.",
address = "Waterloo, Canada",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/02/KMNO2.pdf",
paper = "Kalt02.pdf",
\}

\section*{- axiom.bib -}
```

@Book{Grab03,
editor = "Grabmeier, J. and Kaltofen, E. and Weispfenning, V.",
title = "Computer Algebra Handbook",
publisher = "Springer-Verlag",
year = "2003",
note = "637 + xx~pages + CD-ROM. Includes E. Kaltofen and V. Weispfenning
\S1.4 Computer algebra -- impact on research, pages 4--6;
E. Kaltofen
\S2.2.3 Absolute factorization of polynomials, page 26;
E. Kaltofen and B. D. Saunders
\S2.3.1 Linear systems, pages 36--38;
R. M. Corless, E. Kaltofen and S. M. Watt
\S2.12.3 Hybrid methods, pages 112--125;
E. Kaltofen
\S4.2.17 FoxBox and other blackbox systems, pages 383--385.",

```
```

 isbn = "3-540-65466-6",
 url = "http://www.math.ncsu.edu/~kaltofen/bibliography/01/symnum.pdf",
 paper = "Grab03.pdf",
 }

```
- axiom.bib -
@InProceedings\{Kalt07,
author = "Kaltofen, Erich and Li, Bin and Sivaramakrishnan, Kartik and Yang, Zhengfeng and Zhi, Lihong",
title = "Lower bounds for approximate factorizations via semidefinite programming (extended abstract)",
    year = "2007",
    booktitle =
        "SNC'07 Proc. 2007 Internat. Workshop on Symbolic-Numeric Comput.",
    crossref = "SNC07",
    pages = "203--204",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/07/KLSYZO7.pdf",
    paper = "Kalt07.pdf",
\}
- axiom.bib -
```

@Article{Borw07,
author = "Borwein, Peter and Kaltofen, Erich and Mossinghoff, Michael J.",
title = "Irreducible Polynomials and {Barker} Sequences",
journal = "{ACM} Communications in Computer Algebra",
volume = "162",
number = "4",
year = "2007",
pages = "118--121",
month = "December",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/07/BKM07.pdf",
paper = "Borw07.pdf",
}

```
    — axiom.bib -
```

@Article{Kalt10,
author = "Kaltofen, Erich and Lavin, Mark",
title = "Efficiently Certifying Non-Integer Powers",
journal = "Computational Complexity",
year = "2010",
volume = "19",
number = "3",
month = "September",
pages = "355--366",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/09/KaLa09.pdf",
paper = "Kalt10.pdf",
}

```
- axiom.bib -
@InProceedings \{Kalt11,
    author = "Kaltofen, Erich L. and Nehring, Michael",
    title = "Supersparse black box rational function interpolation",
    booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'11",
    crossref = "ISSAC11",
    month = "June",
    year = "2011",
    pages = "177--185",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/11/KaNe11.pdf",
    paper = "Kalt11.pdf",
\}
- axiom.bib -
@InProceedings\{Gren11a, author = "Grenet, Bruno and Kaltofen, Erich L. and Koiran, Pascal and Portier, Natacha",
title = "Symmetric Determinantal Representation of Weakly Skew Circuits", booktitle \(=\) "Proc. 28th Internat. Symp. on Theoretical Aspects of Computer Science, STACS 2011",
crossref = "STACS11",
pages = "543--554",
year = "2011",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/11/GKKP11.pdf",
paper = "Gren11a.pdf",
\}
— axiom.bib -
```

@InProceedings{Kalt11a,
author = "Kaltofen, Erich L. and Nehring, Michael and Saunders, David B.",
title = "Quadratic-Time Certificates in Linear Algebra",
booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'11",
crossref = "ISSAC11",
month = "June",
year = "2011",
pages = "171--176",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/11/KNS11.pdf",
paper = "Kalt11a.pdf",
}

```
- axiom.bib -
@InProceedings\{Kalt11b,
    author = "Kaltofen, Erich L. and Lee, Wen-shin and Yang, Zhengfeng",
    title = "Fast estimates of \{Hankel\} matrix condition numbers
            and numeric sparse interpolation",
    booktitle = "Proc. 2011 Internat. Workshop on Symbolic-Numeric Comput.",
    month = "June",
    crossref = "SNC11",
    year = "2011",
    pages = "130--136",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/11/KLY11.pdf",
    paper = "Kalt11b.pdf",
\}
— axiom.bib -
@InProceedings\{Guo12,
author = "Guo, Feng and Kaltofen, Erich L. and Zhi, Lihong",
title \(=\) "Certificates of Impossibility of \{Hilbert\}-\{Artin\} Representations
of a Given Degree for Definite Polynomials and Functions",
booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'12",
crossref = "ISSAC12",
month = "July",
year = "2012",
```

 pages = "195--202",
 url = "http://www.math.ncsu.edu/~kaltofen/bibliography/12/GKZ12.pdf",
 paper = "Guo12.pdf",
 }

```
- axiom.bib -
@InProceedings\{Come12a,
    author = "Comer, Matthew T. and Kaltofen, Erich L. and Pernet, Cl\{\’e\}ment",
    title \(=\) "Sparse Polynomial Interpolation and \{Berlekamp\}/\allowbreak
                \{Massey\} Algorithms That Correct Outlier Errors in Input Values",
    booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'12",
    crossref = "ISSAC12",
    month = "July",
    year = "2012",
    pages = "138--145",
    url = "http://www.math.ncsu.edu/ \(k a l t o f e n / b i b l i o g r a p h y / 12 / C K P 12 . p d f ", ~\)
    paper = "Come12a.pdf",
\}
— axiom.bib -
@InProceedings\{Boye13,
author = "Boyer, Brice and Comer, Matthew T. and Kaltofen, Erich L.", title = "Sparse Polynomial Interpolation by Variable Shift in
the Presence of Noise and Outliers in the Evaluations",
booktitle =
"Proc. Tenth Asian Symposium on Computer Mathematics (ASCM 2012)", year = "2013",
month = "October",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/13/BCK13.pdf", paper = "Boye13.pdf",
\}
- axiom.bib -
@InProceedings\{Kalt13b,
```

 author = "Kaltofen, Erich and Yang, Zhengfeng",
 title = "Sparse multivariate function recovery from values with noise and
 outlier errors",
 year = "2013",
 booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'13",
 crossref = "ISSAC13",
 pages = "219--226",
 url = "http://www.math.ncsu.edu/~kaltofen/bibliography/13/KaYa13.pdf",
 paper = "Kalt13b.pdf",
 }

```
    — axiom.bib -
@InProceedings\{Kalt13c,
    author = "Kaltofen, Erich L.",
    title = "Symbolic Computation and Complexity Theory Transcript of My Talk",
    booktitle =
        "Proc. Tenth Asian Symposium on Computer Mathematics (ASCM 2012)",
    year = "2013",
    month = "October",

    paper \(=\) "Kalt13c.pdf",
\}
- axiom.bib -
@InProceedings\{Kalt14, author = "Kaltofen, Erich L. and Yang, Zhengfeng", title = "Sparse Multivariate Function Recovery With a High Error Rate in Evaluations",
    year = "2014",
    booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'14",
    crossref = "ISSAC14",
    url = "http://www.math.ncsu.edu/ \({ }^{k}\) kaltofen/bibliography/14/KaYa14.pdf",
    paper = "Kalt14.pdf",
\}
— axiom.bib -
```

@InProceedings{Kalt14a,
author = "Kaltofen, Erich L. and Pernet, Cl{\'e}ment",
title = "Sparse Polynomial Interpolation Codes and Their Decoding
Beyond Half the Minimal Distance",
year = "2014",
booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC'14",
crossref = "ISSAC14",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/14/KaPe14.pdf",
paper = "Kalt14a.pdf",
}

```
— axiom.bib -
```

@InProceedings{Duma14,
author = "Dumas, Jean-Guillaume and Kaltofen, Erich L.",
title = "Essentially Optimal Interactive Certificates In Linear Algebra",
year = "2014",
booktitle = "Internat. Symp. Symbolic Algebraic Comput. ISSAC’14",
crossref = "ISSAC14",
url = "http://www.math.ncsu.edu/~kaltofen/bibliography/14/DuKa14.pdf",
paper = "Duma14.pdf",
}

```
- axiom.bib -
@InProceedings\{Boye14,
    author = "Boyer, Brice B. and Kaltofen, Erich L.",
    title = "Numerical Linear System Solving With Parametric Entries By
                Error Correction",
    year = "2014",
    booktitle = "SNC'14 Proc. 2014 Int. Workshop on Symbolic-Numeric Comput.",
    crossref = "SNC14",
    url = "http://www.math.ncsu.edu/~kaltofen/bibliography/14/BoKa14.pdf",
    paper = "Boye14.pdf",
\}

\subsection*{2.35 Axiom Citations in the Literature}

A
- ignore -
```

\bibitem[ACM 89]{ACM89} ACM, editor
Proceedings of the ACM-SIGSAM 1989 International
Symposium on Symbolic and Algebraic Computation, ISSAC '89 ACM Press,
New York, NY 10036, USA, 1989, , LCCN QA76.95.I59
year = "1989",
isbn = "0-89791-325-6",
keywords = "axiomref",

```
    - ignore -
\bibitem[ACM 94]\{ACM94\} ACM, editor
ISSAC '94. Proceedings of the International
Symposium on Symbolic and Algebraic Computation. ACM Press, New York, NY,
10036, USA, 1994, . LCCN QA76.95.I59
    year = "1994",
    isbn = "0-89791-638-7",
    keywords = "axiomref",
    - axiom.bib -
@article\{Augo91,
    author \(=\) "Augot, D. and Charpin, P. and Sendrier, N.",
    title = "The miniumum distance of some binary codes via the
            Newton's identities",
    journal = "Cohen and Charping [CC91]",
    year = "1991",
    pages = "65-73",
    isbn = "0-387-54303-1",
    misc \(=\) "3-540-54303-1 (Berlin). LCCN QA268.E95 1990",
    keywords = "axiomref",
    paper = "Augo91.pdf",
\}
- ignore -
```

\bibitem[Adams 94]{AL94}
author = "Adams, William W. and Loustaunau, Philippe",
title = "An Introduction to Gr\"obner Bases",
year = "1994",
American Mathematical Society (1994)
isbn = "0-8218-3804-0",
keywords = "axiomref",

```
- ignore -
```

\bibitem[Andrews 84]{And84}
author = "Andrews, George E.",
title = "Ramanujan and SCRATCHPAD",
year = "1984",
pages = "383-??",
keywords = "axiomref",
In Golden and Hussain [GH84]

```
    - ignore -
```

\bibitem[Andrews 88]{And88}
author = "Andrews, G. E.",
title = "Application of Scratchpad to problems in special functions and
combinatorics",
year = "1988"
pages = "158-??",
isbn = "3-540-18928-9",
keywords = "axiomref",
In Janssen [Jan88], pages 158-?? ISBN
0-387-18928-9 LCCN QA155.7.E4T74

```
    - ignore -
\bibitem[Anon 91]\{Ano91\}
```

 author = "Anonymous",
 year = "1991,
 keywords = "axiomref",
 Proceedings 1991 Annual Conference, American Society for
Engineering Education. Challenges of a Changing World. ASEE, Washington, DC
2 vol.

```
\(\qquad\)
- ignore -
\bibitem[Anon 92]\{Ano92\}
    author = "Anonymous",
    year = "1992",
    keywords = "axiomref",
Programming environments for high-level scientific problem solving.
IFIP TC2/WG 2.5 working conference. IFIP Transactions. A Computer Science
and Technology, A-2:??, CODEN ITATEC. ISSN 0926-5473
- ignore -
\bibitem[Anono 95]\{Ano95\}
author =Anonymous
keywords = "axiomref", year = "1995",
GAMM 94 annual meeting. Zeitschrift fur Angewandte Mathematik und Physik, 75 (suppl. 2), CODEN ZAMMAX, ISSN 0044-2267
\(\qquad\)

B
— axiom.bib -
```

@article{Bacl14,
author = "Baclawski, Krystian",
title = "SPAD language type checker",
journal = "unknown",
year = "2014",
url = "http://github.com/cahirwpz/phd",

```
```

 keywords = "axiomref",
 abstract = "
 The project aims to deliver a new type checker for SPAD language.
 Several improvements over current type checker are planned.
 \begin{itemize}
 \item introduce better type inference
 \item introduce modern language constructs
 \item produce understandable diagnostic messages
 \item eliminate well known bugs in the type system
 \item find new type errors
 \end{itemize}"
 }

```
\(\qquad\)
- ignore -
```

\bibitem[Blair 70]{BGJ70}
author = "Blair, Fred W. and Griesmer, James H. and Jenks, Richard D.",
title = "An interactive facility for symbolic mathematics",
year = "1970",
pages = "394-419",
keywords = "axiomref",
Proc. International Computing Symposium, Bonn, Germany,

```
    - ignore -
\bibitem[Blair 70a]\{BJ70\}
    author = "Blair, Fred W. and Jenks, Richard D.",
    title = "LPL: LISP programming language",
    year = "1970",
    keywords = "axiomref",
IBM Research Report, RC3062 Sept
- axiom.bib -
@inproceedings\{BGDW95,
    author \(=\) "Broadbery, P. A. and G\{\’o\}mez-D\{\’\i\}az, T. and Watt, S. M.",
    title = "On the Implementation of Dynamic Evaluation",
```

 year = "1995",
 pages = "77-84",
 keywords = "axiomref",
 isbn = "0-89791-699-9",
 url = "http://pdf.aminer.org/000/449/014/on_the_implementation_of_dynamic_evaluation.pdf",
 paper = "BGDW95.pdf",
 abstract = "
 Dynamic evaluation is a technique for producing multiple results
 according to a decision tree which evolves with program execution.
 Sometimes it is desired to produce results for all possible branches
 in the decision tree, while on other occasions, it may be sufficient
 to compute a single result which satisfies certain properties. This
 techinique finds use in computer algebra where computing the correct
 result depends on recognizing and properly handling special cases of
 parameters. In previous work, programs using dynamic evaluation have
 explored all branches of decision trees by repeating the computations
 prior to decision points.
 This paper presents two new implementations of dynamic evaluation
 which avoid recomputing intermediate results. The first approach uses
 Scheme ''continuations'' to record state for resuming program
 execution. The second implementation uses the Unix ''fork'' operation
 to form new processes to explore alternative branches in parallel."
 }

```
- axiom.bib -
@inproceedings\{Boe89,
    author = "Boehm, Hans-J.",
    title \(=\) "Type Inference in the Presence of Type Abstraction",
    year = "1989",
    pages = "192-206",
    keywords = "axiomref",
    url = "http://www.acm.org/pubs/citations/proceedings/pldi/73141/p192-boehm",
    paper = "Boe89.pdf",
    booktitle = "ACM SIGPLAN Notices",
    volume = "24",
    number = "7",
    month = "July",
    abstract = "
        A number of recent programming language designs incorporate a type
        checking system based on the Girard-Reynolds polymorphic
        \(\$ \backslash l a m b d a \$-c a l c u l u s . ~ T h i s ~ a l l o w s ~ t h e ~ c o n s t r u c t i o n ~ o f ~ g e n e r a l ~ p u r p o s e, ~\)
        reusable software without sacrificing compile-time type checking. A
        major factor constraining the implementation of these languages is the
        difficulty of automatically inferring the lengthy type information
```

 that is otherwise required if full use is made of these
 languages. There is no known algorithm to solve any natural and fully
 general formulation of the ''type inference'' problem. One very
 reasonable formulation of the problem is known to be undecidable.
 Here we define a restricted version of the type inference problem and
 present an efficient algorithm for its solution. We argue that the
 restriction is sufficiently weak to be unobtrusive in practice."
 }

```
— axiom.bib -
@inproceedings\{BHGMO4,
author \(=\) "Boulton, Richard and Hardy, Ruth and Gottliebsen, Hanne and Martin, Ursula",
title = "Design verification for control engineering", year = "2004",
month = "April",
booktitle = "Proc 4th Int. Conf. on Integrated Formal Methods",
keywords = "axiomref",
abstract = "
We introduce control engineering as a new domain of application for formal methods. We discuss design verification, drawing attention to the role played by diagrammatic evaluation criteria involving numeric plots of a design, such as Nichols and Bode plots. We show that symbolic computation and computational logic can be used to discharge these criteria and provide symbolic, automated, and very general alternatives to these standard numeric tests. We illustrate our work with reference to a standard reference model drawn from military avionics."
\}
- ignore -
\bibitem[Boulanger 91]\{Bou91\}
author = "Boulanger, Jean-Louis",
title = "Etude de la compilation de scratchpad 2",
year = "1991",
month = "September",
Rapport de DEA Universite dl lille 1
keywords = "axiomref",
- axiom.bib -
```

@misc{Bou93a,
author = "Boulanger, Jean-Louis",
title = "Axiom, language fonctionnel \'a d\'evelopement objet",
year = "1993",
month = "October",
paper = "Bou93a.pdf",
keywords = "axiomref"
}

```
— axiom.bib -
```

@misc{Bou93b,
author = "Boulanger, Jean-Louis",
title = "AXIOM, A Functional Language with Object Oriented Development",
year = "1993",
paper = "Bou93b.pdf",
keywords = "axiomref",
abstract = "
We present in this paper, a study about the computer algebra system
Axiom, which gives us many very interesting Software engineering
concepts. This language is a functional language with an Object
Oriented Development. This feature is very important for modeling the
mathematical world (Hierarchy) and provides a running with
mathematical sense. (All objects are functions). We present many
problems of running and development in Axiom. We can note that Aiom is
the only system of this category."

```
\}
    - ignore -
\bibitem[Boulanger 94] \{Bou94\}
    author = "Boulanger, J.L.",
    title = "Object Oriented Method for Axiom",
    year = "1995",
    month = "February",
    pages = "33-41",
    paper \(=\) "Bou94.pdf",
```

ACM SIGPLAN Notices, 30(2) CODEN SINODQ ISSN 0362-1340
keywords = "axiomref",
abstract = "
Axiom is a very powerful computer algebra system which combines two
language paradigms (functional and OOP). Mathematical world is complex
and mathematicians use abstraction to design it. This paper presents
some aspects of the object oriented development in Axiom. The Axiom
programming is based on several new tools for object oriented
development, it uses two levels of class and some operations such that
{\sl coerce}, {\sl retract}, or {\sl convert} which permit the type
evolution. These notions introduce the concept of multi-view."
}

```
- ignore -
\bibitem[Bronstein 87]\{Bro87\}
author = "Bronstein, Manuel",
title \(=\) "Integration of Algebraic and Mixed Functions",
year = "1987",
in [Wit87], p18
keywords = "axiomref",
- ignore -
```

\bibitem[Bronstein 89]{Bro89}
author= "Bronstein, M.",
title = "Simplification of real elementary functions",
year = "1989",
pages = "207-211",
isbn = "0-89791-325-6",
ACM [ACM89] pages LCCN QA76.95.I59 1989
keywords = "axiomref",
abstract = "
We describe an algorithm, based on Risch's real structure theorem, that
determines explicitly all the algebraic relations among a given set of
real elementary functions. We also provide examples from its
implementation that illustrate the advantages over the use of complex
logarithms and exponentials."
}

```
— axiom.bib -
```

@inproceedings{Bron91a,
author = "Bronstein, M.",
title = "The Risch Differential Equation on an Algebraic Curve",
booktitle = "Proc. 1991 Int. Symp. on Symbolic and Algebraic Computation",
series = "ISSAC'91",
year = "1991",
pages = "241-246",
isbn = "0-89791-437-6",
publisher = "ACM, NY",
keywords = "axiomref",
paper = "Bro91a.pdf",
abstract = "
We present a new rational algorithm for solving Risch differential
equations over algebraic curves. This algorithm can also be used to
solve n^{th}-order linear ordinary differential equations with
coefficients in an algebraic extension of the rational functions. In
the general (''mixed function'') case, this algorithm finds the
denominator of any solution of the equation."
}

```
                    - ignore -
\bibitem[Bronstein 91c] \{Bro91c\}
    author = "Bronstein, Manuel",
    title = "Computer Algebra and Indefinite Integrals",
    year = "1991",
    paper \(=\) "Bro91c.pdf",
in Computer Aided Proofs in Analysis, K.R. Meyers et al. (eds)
Springer-Verlag, NY (1991)
    keywords = "axiomref",
    abstract = "
        We give an overview, from an analytical point of view, of decision
        procedures for determining whether an elementary function has an
        elementary function has an elementary antiderivative. We give examples
        of algebraic functions which are integrable and non-integrable in
        closed form, and mention the current implementation of various computer
        algebra systems."
\}
```

 - ignore -
 \bibitem[Bronstein 92]{Bro92}
author = "Bronstein, M.",
title = "Linear Ordinary Differential Equations: Breaking Through the
Order 2 Barrier",
year = "1992",
url =
"http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/issac92.ps.gz",
paper = "Bro92.pdf",
keywords = "axiomref",
abstract = "
A major subproblem for algorithms that either factor ordinary linear
differential equations or compute their closed form solutions is to
find their solutions y which satisfy $y^{'}/y \in \overline{K}(x)$
where K is the constant field for the coefficients of the equation.
While a decision procedure for this subproblem was known in the
19^{th} century, it requires factoring polynomials over
\overline{K} and has not been implemented in full generality. We
present here an efficient algorithm for this subproblem, which has
been implemented in the AXIOM computer algebra system for equations of
arbitrary order over arbitrary fields of characteristic 0. This
algorithm never needs to compute with the individual complex
singularities of the equation, and algebraic numbers are added only
when they appear in the potential solutions. Implementation of the
complete Singer algorithm for $n=2,3$ based on this building block is
in progress."
}

- ignore -

```
```

\bibitem[Bronstein 93]{Bro93}

```
\bibitem[Bronstein 93]{Bro93}
    author = "Bronstein, Manuel (ed)",
    author = "Bronstein, Manuel (ed)",
    year = "1993",
    year = "1993",
    month = "July"
    month = "July"
    isbn = "0-89791-604-2",
    isbn = "0-89791-604-2",
ISSAC'93: proceedings of the 1993 International Symposium on Symbolic
ISSAC'93: proceedings of the 1993 International Symposium on Symbolic
and Algebraic Computation, Kiev, Ukraine,
and Algebraic Computation, Kiev, Ukraine,
ACM Press New York, NY 10036, USA, ISBN
ACM Press New York, NY 10036, USA, ISBN
LCCN QA76.95 I59 1993 ACM order number 505930
LCCN QA76.95 I59 1993 ACM order number 505930
    keywords = "axiomref",
```

 keywords = "axiomref",
    ```
- ignore -
\bibitem[Brunelli 08] \{Brun08\}
author = "Brunelli, J.C.",
title = "Streams and Lazy Evaluation Applied to Integrable Models",
year = "2008",
url = "http://arxiv.org/PS_cache/nlin/pdf/0408/0408058v1.pdf",
paper = "Brun08.pdf",
keywords = "axiomref",
abstract = "
Computer algebra procedures to manipulate pseudo-differential operators are implemented to perform calculations with integrable models. We use lazy evaluation and streams to represent and operate with pseudo-differential operators. No order of truncation is needed since terms are produced on demand. We give a series of concrete examples using the computer algebra language MAPLE."
- ignore -
```

\bibitem[Bronstein 93]{BS93}
author = "Bronstein, Manuel and Salvy, Bruno",
title = "Full Partial Fraction Decomposition of Rational Functions",
year = "1993",
pages = "157-160",
isbn = "0-89791-604-2",
In Bronstein [Bro93] LCCN QA76.95 I59 1993
keywords = "axiomref",

```
            — axiom.bib -
```

@misc{Bro92a,
author = "Bronstein, Manuel",
title = "Integration and Differential Equations in Computer Algebra",
year = "1992",
url = "http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.576",
paper = "Bro92a.pdf",
keywords = "axiomref",
abstract = "
We describe in this paper how the problems of computing indefinite
integrals and solving linear ordinary differential equations in closed

```
form are now solved by computer algebra systems. After a brief review of the mathematical history of those problems, we outline the two major algorithms for them (respectively the Risch and Singer algorithms) and the recent improvements on those algorithms which has allowed them to be implemented."
\}
- ignore -
\bibitem[Beneke 94] \{BS94\}
author = "Beneke, T. and Schwippert, W.",
title \(=\) "Double-track into the future: MathCAD will gain new users with Standard and Plus versions",
year = "1994",
month = "July",
pages = "107-110",
keywords = "axiomref",
Elektronik, 43(15) CODEN EKRKAR ISSN 0013-5658
- ignore -
```

\bibitem[Bronstein 97a]{Bro97a}
author = "Bronstein, Manuel and Weil, Jacques-Arthur",
title = "On Symmetric Powers of Differential Operators",
series = "ISSAC'97",
year = "1997",
pages = "156-163",
keywords = "axiomref",
url =
"http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/mb_papers.html"
paper = "Bro97a.pdf",
publisher = "ACM, NY",
abstract = "
We present alternative algorithms for computing symmetric powers of
linear ordinary differential operators. Our algorithms are applicable
to operators with coefficients in arbitrary integral domains and
become faster than the traditional methods for symmetric powers of
sufficiently large order, or over sufficiently complicated coefficient
domains. The basic ideas are also applicable to other computations
involving cyclic vector techniques, such as exterior powers of
differential or difference operators."

```
- ignore -
```

\bibitem[Borwein 00] {Bor00}
author = "Borwein, Jonathan",
title = "Multimedia tools for communicating mathematics",
year = "2000",
pages = "58",
isbn = "3-540-42450-4",
publisher = "Springer-Verlag",
keywords = "axiomref"

```
            - axiom.bib -
```

@article{BT94,
author = "Brown, R. and Tonks, A.",
title = "Calculations with simplicial and cubical groups in AXIOM",
journal = "Journal of Symbolic Computation",
volume = "17",
number = "2",
pages = "159-179",
year = "1994",
month = "February",
misc = "CODEN JSYCEH ISSN 0747-7171",
keywords = "axiomref"
}

```
                    - axiom.bib -
@misc\{Brow95,
    author \(=\) "Brown, Ronald and Dreckmann, Winfried",
    title \(=\) "Domains of data and domains of terms in AXIOM",
    year = "1995",
    keywords = "axiomref",
    paper = "DB95.pdf",
    abstract = "
        The main new concept we wish to illustrate in this paper is a
        distinction between ''domains of data', and ' domains of terms', and
        its use in the programming of certain mathematical structures.
        Although this distinction is implicit in much of the programming work
```

 that has gone into the construction of Axiom categories and domains,
 we believe that a formalisation of this is new, that standards and
 conventions are necessary and will be useful in various other
 contexts. We shall show how this concept may be used for the coding of
 free categories and groupoids on directed graphs."
 }

```
- ignore -
```

\bibitem[Buchberger 85]{BC85} Buchberger, Bruno and Caviness, Bob F. (eds)
EUROCAL '85: European Conference on Computer Algebra, Linz, Austria,
LLCN QA155.7.E4 E86
isbn = "0-387-15983-5, 0-387-15984-3",
year = "1985",
month = "April",
publisher = "Springer-Verlag, Berlin, Germany",
keywords = "axiomref",
misc = "Lecture Notes in Computer Science, Vol 204",

```
            - axiom.bib -
@misc\{Buh05,
    author = "Buhl, Soren L.",
    title = "Some Reflections on Integrating a Computer Algebra System in R",
    year = "2005",
    keywords = "axiomref"
\}
- ignore -
```

\bibitem[Burge 91]{Burg91}
author = "Burge, W.H.",
title = "Scratchpad and the Rogers-Ramanujan identities",
year = "1991",
pages = "189-190",
isbn = "0-89791-437-6",
keywords = "axiomref",

```
```

abstract = "
This note sketches the part played by Scratchpad in obtaining new
proofs of Euler's theorem and the Rogers-Ramanujan Identities."

```
            — axiom.bib -
```

@techreport{BW87,
author = "Burge, W. and Watt, S.",
title = "Infinite structures in SCRATCHPAD II",
year = "1987",
institution = "IBM Research",
type = "Technical Report",
number = "RC 12794",
keywords = "axiomref"
}

```
- ignore -
\bibitem[Burge 87a] \{BWM87\}
    author = "Burge, William H. and Watt, Stephen M. and Morrison, Scott C.",
    title = "Streams and Power Series",
    year = "1987",
    pages = "9-12",
    keywords = "axiomref",
in [Wit87], pp9-12
- ignore -
\bibitem[Burge 89]\{BW89\}
author = "Burge, W. H. and Watt, S. M.",
title \(=\) "Infinite structures in Scratchpad II",
year = "1989",
pages \(=\) "138-148",
isbn = "3-540-51517-8",
keywords = "axiomref",
in Davenport [Dav89], LCCN QA155.7.E4E86 1987

\section*{C}
- ignore -
\bibitem[Calmet 94]\{Cal94\} Calmet, J. (ed)
Rhine Workshop on Computer Algebra, Proceedings.
Universit\{\"a\}t Karsruhe, Karlsruhe, Germany 1994 keywords = "axiomref",
- ignore -
```

\bibitem[Camion 92]{CCM92}
author = "Camion, Paul and Courteau, Bernard and Montpetit, Andre",
title = "A combinatorial problem in Hamming Graphs and its solution
in Scratchpad",
year = "1992",
month = "January",
keywords = "axiomref",
Rapports de recherche 1586, Institut National de Recherche en
Informatique et en Automatique, Le Chesnay, France, 12pp

```
    - ignore -
\bibitem[Capriotti 00]\{CCR00\}
    author = "Capriotti, Olga and Cohen, Arjeh M. and Riem, Manfred",
    title = "Java Phrasebooks for Computer Algebra and Automated Deduction",
    url = "http://www.sigsam.org/bulletin/articles/132/paper8.pdf",
    paper \(=\) "CCROO.pdf",
    keywords = "axiomref",
- axiom.bib -
@misc\{CC99,
    author = "Capriotti, O. and Carlisle, D.",
    title = "OpenMath and MathML: Semantic Mark Up for Mathematics",
    year = "1999",
```

 url = "http://www.acm.org/crossroads/xrds6-2/openmath.html",
 keywords = "axiomref"
    ```
\}
                    - axiom.bib -
@misc\{Capr99,
    author = "Capriotti, Olga and Cohen, Arjeh M. and Cuypers, Hans and
                    Sterk, Hans",
    title \(=\) "OpenMath Technology for Interactive Mathematical Documents",
    year = "2002",
    pages = "51-66",
    publisher = "Springer-Verlag, Berlin, Germany",
    url = "http://www.win.tue.nl/~hansc/lisbon.pdf",
    paper = "Capr99.pdf",
    misc = "in Multimedia Tools for Communicating Mathematics",
    keywords = "axiomref"
\}
— axiom.bib -
```

@misc{Carp04,
author = "Carpent, Quentin and Conil, Christophe",
title = "Utilisation de logiciels libres pour la r\'ealisation de TP MT26",
year = "2004",
paper = "Carp04.pdf",
keywords = "axiomref"
}

```
    — axiom.bib -
@misc\{Chu85,
    author = "Chudnovsky, D.V and Chudnovsky, G.V.",
    title = "Elliptic Curve Calculations in Scratchpad II",
    year = "1985",
    institution = "Mathematics Dept., IBM Research",
    type \(=\) "Scratchpad II Newsletter 1 (1)",
```

 keywords = "axiomref"
    ```
\}
- ignore -
\bibitem[Chudnovsky 87]\{Chu87\}
author \(=\) "Chudnovsky, D.V and Chudnovsky, G.V.", title = "New Analytic Methods of Polynomial Root Finding", year = "1987",
pages = "2", keywords = "axiomref",
in [Wit87]
\(\qquad\)
- ignore -
\bibitem[Chudnovsky 89]\{Chu89\}
author \(=\) "Chudnovsky, D.V. and Chudnovsky, G.V.",
title \(=\) "The computation of classical constants",
year = "1989",
month = "November",
pages = "8178-8182",
keywords = "axiomref",
Proc. Natl. Acad. Sci. USA Vol 86
— axiom.bib -
```

@proceedings{CJ86,
editor = "Chudnovsky, David and Jenks, Richard",
title = "Computers in Mathematics",
year = "1986",
month = "July",
isbn = "0-8247-8341-7",
note = "International Conference on Computers and Mathematics",
publisher = "Marcel Dekker, Inc",
keywords = "axiomref"
}

```
— axiom.bib -
@misc\{Cohe03,
author = "Cohen, Arjeh and Cuypers, H. and Barreiro, Hans and Reinaldo, Ernesto and Sterk, Hans",
title \(=\) "Interactive Mathematical Documents on the Web",
year = "2003",
pages = "289-306",
editor = "Joswig, M. and Takayma, N.",
publisher = "Springer-Verlag, Berlin, Germany",
keywords = "axiomref",
misc = "in Algebra, Geometry and Software Systems"
\}
- ignore -
\bibitem[Cohen 91]\{CC91\} Cohen, G.; Charpin, P.; (ed)
EUROCODE '90 International Symposium on
Coding Theory and Applications Proceedings. Springer-Verlag, Berlin, Germany
/ Heidelberg, Germany / London, UK / etc., 1991 ISBN 0-387-54303-1
(New York), 3-540-54303-1 (Berlin), LCCN QA268.E95 1990
keywords = "axiomref",
- ignore -
\bibitem[Conrad (a)]\{CFMPxxa\}
author = "Conrad, Marc and French, Tim and Maple, Carsten and Pott, Sandra",
title = "Approaching Inheritance from a Natural Mathematical Perspective and from a Java Driven Viewpoint: a Comparative Review", keywords = "axiomref",
paper = "CFMPxxa.pdf",
abstract = "
It is well-known that few object-oriented programming languages allow objects to change their nature at run-time. There have been a number of reasons presented for this, but it appears that there is a real need for matters to change. In this paper we discuss the need for object-oriented programming languages to reflect the dynamic nature of problems, particularly those arising in a mathematical context. It is from this context that we present a framework that realistically
represents the dynamic and evolving characteristic of problems and algorithms."
- axiom.bib -
```

@misc{CFMPxxb,
author = "Conrad, Marc and French, Tim and Maple, Carsten and Pott, Sandra",
title = "Mathematical Use Cases lead naturally to non-standard Inheritance
Relationships: How to make them accessible in a mainstream language?",
paper = "CFMPxxb.pdf",
keywords = "axiomref",
abstract = "
Conceptually there is a strong correspondence between Mathematical
Reasoning and Object-Oriented techniques. We investigate how the ideas
of Method Renaming, Dynamic Inheritance and Interclassing can be used
to strengthen this relationship. A discussion is initiated concerning
the feasibility of each of these features."
}

```
- axiom.bib -
```

@misc{Cuyp10,
author = "Cuypers, Hans and Hendriks, Maxim and Knopper, Jan Willem",
title = "Interactive Geometry inside MathDox",
year = "2010",
url = "http://www.win.tue.nl/~hansc/MathDox_and_InterGeo_paper.pdf",
paper = "Cuyp10",
keywords = "axiomref"
}

```

\section*{D}
- axiom.bib -
@inproceedings\{Dalm97, author \(=\) \{Dalmas, St \(\backslash\) 'ephane and Ga\"etano, Marc and Watt, Stephen\},
```

 title = "An OpenMath 1.0 Implementation",
 booktitle = "Proc. 1997 Int. Symp. on Symbolic and Algebraic Computation",
 series = "ISSAC'97",
 year = "1997",
 isbn = "0-89791-875-4",
 location = "Kihei, Maui, Hawaii, USA",
 pages = "241-248",
 numpages = "8",
 url = "http://doi.acm.org/10.1145/258726.258794",
 doi = "10.1145/258726.258794",
 acmid = "258794",
 publisher = "ACM, New York, NY USA",
 keywords = "axiomref"
 }
_ ignore -
\bibitem[Dalmas 92]{Dal92} Dalmas, S.
title = "A polymorphic functional language applied to symbolic computation",
In Wang [Wan92] pp369-375 ISBN 0-89791-489-9 (soft cover) 0-89791-490-2
(hard cover) LCCN QA76.95.I59 1992
keywords = "axiomref",

```
    - axiom.bib -
```

@misc{Daly88,
author = "Daly, Timothy",
title = "Axiom in an Educational Setting, Axiom course slide deck",
year = "1988",
month = "January",
keywords = "axiomref"
}

```
- ignore -

TPDHERE
\bibitem[Daly 02]\{Dal02\} Daly, Timothy
```

 title = "Axiom as open source",
 SIGSAM Bulletin (ACM Special Interest Group
on Symbolic and Algebraic Manipulation) 36(1) pp28-?? March 2002
CODEN SIGSBZ ISSN 0163-5824
keywords = "axiomref",
- ignore -
\bibitem[Daly 03]{Dal03} Daly, Timothy
title = "The Axiom Wiki Website",
url = "http://axiom.axiom-developer.org",
keywords = "axiomref",

```
\(\qquad\)
```

- ignore -

```
```

\bibitem[Daly 06]{Dal06} Daly, Timothy

```
\bibitem[Daly 06]{Dal06} Daly, Timothy
    title = "Axiom Volume 1: Tutorial",
    title = "Axiom Volume 1: Tutorial",
Lulu, Inc. }860\mathrm{ Aviation Parkway,
Lulu, Inc. }860\mathrm{ Aviation Parkway,
Suite 300, Morrisville, NC 27560 USA, 2006 ISBN 141166597X 287pp
Suite 300, Morrisville, NC 27560 USA, 2006 ISBN 141166597X 287pp
    url = "http://www.lulu.com/content/190827",
    url = "http://www.lulu.com/content/190827",
    keywords = "axiomref",
```

 keywords = "axiomref",
    ```
            - ignore -
\bibitem[Daly 09]\{Dal09\} Daly, Timothy
    title = "The Axiom Literate Documentation",
    url = "http://axiom-developer.org/axiom-website/documentation.html",
    keywords = "axiomref",
- ignore -
\bibitem[Daly 13]\{Dal13\} Daly, Timothy
title \(=\) "Literate Programming in the Large'",
```

April 8-9, 2013 Portland Oregon
url = "http://conf.writethedocs.org",
url2 = "http://daly.axiom-developer.org",
video = "http://www.youtube.com/watch?v=Av0PQDVTP4A",
keywords = "axiomref",

```
\(\qquad\)
```

 _ ignore -
 \bibitem[Davenport 79a]{Dav79a} Davenport, J.H.
title = "What can SCRATCHPAD/370 do?",
VM/370 SPAD.SCRIPTS August 24, 1979 SPAD.SCRIPT
keywords = "axiomref",

```
\(\qquad\)
```

- ignore -
\bibitem[Davenport 80]{Dav80} Davenport, J.H.; Jenks, R.D.
title = "MODLISP -- an Introduction",
Proc LISP80, 1980, and IBM RC8357 Oct 1980
keywords = "axiomref",
_
- ignore -
\bibitem[Davenport 84]{DGJ84} Davenport, J.; Gianni, P.; Jenks, R.;
Miller, V.; Morrison, S.; Rothstein, M.; Sundaresan, C.; Sutor, R.;
Trager, B.
title = "Scratchpad",
Mathematical Sciences Department, IBM Thomas Watson Research Center 1984
keywords = "axiomref",

```
\(\qquad\)
```

- ignore -
\bibitem[Davenport 84a]\{Dav84a\} Davenport, James H.
title = "A New Algebra System",

```
```

paper = "Dav84a.pdf",
keywords = "axiomref",

```
\(\qquad\)
- ignore -
```

\bibitem[Davenport 85]{Dav85} Davenport, James H.
title = "The LISP/VM Foundation of Scratchpad II",
The Scratchpad II Newsletter, Volume 1, Number 1, September 1, }198
IBM Corporation, Yorktown Heights, NY
keywords = "axiomref",

```
    - ignore -
\bibitem[Davenport 88]\{DST88\} Davenport, J.H.; Siret, Y.; Tournier, E.
Computer Algebra: Systems and Algorithms for Algebraic Computation.
Academic Press, New York, NY, USA, 1988, ISBN 0-12-204232-9
    url = "http://staff.bath.ac.uk/masjhd/masternew.pdf",
    paper = "DST88.pdf",
    keywords = "axiomref",
    - ignore -
```

\bibitem[Davenport 14]{Dav14} Davenport, James H.
title = "Computer Algebra textbook",
url = "http://staff.bath.ac.uk/masjhd/JHD-CA.pdf",
paper = "Dav14.pdf",
keywords = "axiomref",

```
        - ignore -
\bibitem[Davenport 89]\{Dav89\} Davenport, J.H. (ed)
EUROCAL ' 87 European Conference on Computer Algebra Proceedings
Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London,
```

UK / etc., 1989 ISBN 3-540-51517-8 LCCN QA155.7.E4E86 1987

```
    keywords = "axiomref",
- ignore -
\bibitem[Davenport 90]\{DT90\} Davenport, J. H.; Trager, B. M.
title = "Scratchpad's view of algebra I: Basic commutative algebra", In Miola [Mio90], pp40-54. ISBN 0-387-52531-9 (New York), 3-540-52531-9 (Berlin). LCCN QA76.9.S88I576 1990 also in AXIOM Technical Report, ATR/1, NAG Ltd., Oxford, 1992
keywords = "axiomref",
— axiom.bib -
@inproceedings\{Dave91,
author = "Davenport, J. H. and Gianni, P. and Trager, B. M.",
title = "Scratchpad's View of Algebra II:
A Categorical View of Factorization",
booktitle = "Proc. 1991 Int. Symp. on Symbolic and Algebraic Computation", series = "ISSAC '91",
year = "1991",
isbn = "0-89791-437-6",
location = "Bonn, West Germany",
pages = "32--38",
numpages = "7",
url = "http://doi.acm.org/10.1145/120694.120699", doi \(=\) "10.1145/120694.120699",
acmid = "120699",
publisher = "ACM",
address \(=\) "New York, NY, USA", keywords = "axiomref",
paper = "Dave91.pdf",
abstract = "
This paper explains how Scratchpad solves the problem of presenting a categorical view of factorization in unique factorization domains,
i.e. a view which can be propagated by functors such as

SparseUnivariatePolynomial or Fraction. This is not easy, as the constructive version of the classical concept of UniqueFactorizationDomain cannot be so propagated. The solution adopted is based largely on Seidenberg's conditions (F) and (P), but there are several additional points that have to be borne in mind to produce reasonably efficient algorithms in the required generality.
```

 The consequence of the algorithms and interfaces presented in this
 paper is that Scratchpad can factorize in any extension of the
 integers or finite fields by any combination of polynomial, fraction
 and algebraic extensions: a capability far more general than any other
 computer algebra system possesses. The solution is not perfect: for
 example we cannot use these general constructions to factorize
 polyinmoals in $\overline{Z[\sqrt{-5}]}[x]$ since the domain
 $Z[\sqrt{-5}]$ is not a unique factorization domain, even though
 $\overline{Z[\sqrt{-5}]}$ is, since it is a field. Of course, we can
 factor polynomials in $\overline{Z}[\sqrt{-5}][x]$"
 }

```
- ignore -
\bibitem[Davenport 92]\{DGT92\} Davenport, J. H.; Gianni, P.; Trager, B. M. title = "Scratchpad's view of algebra II: A categorical view of factorization", Technical Report TR4/92 (ATR/2) (NP2491), Numerical Algorithms Group, Inc., Downer's Grove, IL, USA and Oxford, UK, December 1992
url = "http://www.nag.co.uk/doc/TechRep/axiomtr.html",
keywords = "axiomref",
- ignore -
```

\bibitem[Davenport 92a]{Dav92a} Davenport, J. H.
title = "The AXIOM system",
AXIOM Technical Report TR5/92 (ATR/3)
(NP2492) Numerical Algorithms Group, Inc., Downer's Grove, IL, USA and
Oxford, UK, December }199
url = "http://www.nag.co.uk/doc/TechRep/axiomtr.html",
keywords = "axiomref",

```
- ignore -
\bibitem[Davenport 92b] \{Dav92b\} Davenport, J. H.
title = "How does one program in the AXIOM system?",
AXIOM Technical Report TR6/92 (ATR/4) (NP2493)
```

Numerical Algorithms Group, Inc., Downer's
Grove, IL, USA and Oxford, UK December 1992
url = "http://www.nag.co.uk/doc/TechRep/axiomtr.html",
paper = "Dav92b.pdf",
keywords = "axiomref",
abstract = "
Axiom is a computer algebra system superficially like many others, but
fundamentally different in its internal construction, and therefore in
the possibilities it offers to its users and programmers. In these
lecture notes, we will explain, by example, the methodology that the
author uses for programming substantial bits of mathematics in Axiom."

```
            - ignore -
\bibitem[Davenport 92c]\{DT92\} Davenport, J. H.; Trager, B. M.
    title = "Scratchpad's view of algebra I: Basic commutative algebra",
DISCO 90 Capri, Italy April 1990 ISBN 0-387-52531-9 pp40-54
Technical Report TR3/92 (ATR/1) (NP2490), Numerical
Algorithms Group, Inc., Downer's Grove, IL, USA and Oxford, UK,
December 1992.
    url = "http://www.nag.co.uk/doc/TechRep/axiomtr.html",
    keywords = "axiomref",
    - ignore -
\bibitem[Davenport 93] \{Dav93\} Davenport, J. H.
    title = "Primality testing revisited",
Technical Report TR2/93 (ATR/6) (NP2556) Numerical Algorithms Group, Inc.,
Downer's Grove, IL, USA and Oxford, UK, August 1993
    url = "http://www.nag.co.uk/doc/TechRep/axiomtr.html",
    keywords = "axiomref",
        - -
            - ignore -
\bibitem[Davenport (a)]\{DFxx\} Davenport, James; Faure, Christ\'ele
title = "The Unknown in Computer Algebra",
url = "http://axiom-wiki.newsynthesis.org/public/refs/TheUnknownInComputerAlgebra.pdf",
```

paper = "DFxx.pdf",
keywords = "axiomref",
abstract = "
Computer algebra systems have to deal with the confusion between
''programming variables'' and ''mathematical symbols''. We claim that
they should also deal with ''unknowns'', i.e. elements whose values
are unknown, but whose type is known. For examples $x^p \ne x$ if x
is a symbol, but $x^p = x$ if $x \in GF(p)$. We show how we have
extended Axiom to deal with this concept."

```
            - ignore -
```

\bibitem[Davenport 00]{Dav00} Davenport, James
''13th OpenMath Meeting''
James H. Davenport
title = "A New Algebra System",
May 1984
url = "http://xml.coverpages.org/openmath13.html",
paper = "Dav00.pdf",
keywords = "axiomref",

```
            - ignore -
\bibitem [Davenport 12] \{Dav12\} Davenport, J.H.
    title = "Computer Algebra",
    url = "http://staff.bath.ac.uk/masjhd/JHD-CA.pdf",
    keywords = "axiomref",
            - ignore -
\bibitem[Dewar 94] \{Dew94\} Dewar, M. C.
    title \(=\) "Manipulating Fortran Code in AXIOM and the AXIOM-NAG Link",
Proceedings of the Workshop on Symbolic and Numeric Computing, ed by Apiola, H.
and Laine, M. and Valkeila, E. pp1-12 University of Helsinki, Finland (1994)
    keywords = "axiomref",
- axiom.bib -
```

@misc{Dewa,
author = "Dewar, Mike",
title = "OpenMath: An Overview",
url = "http://www.sigsam.org/bulletin/articles/132/paper1.pdf",
paper = "Dewa.pdf",
keywords = "axiomref"
}

```
    - ignore -
\bibitem[Dicrescenzo 89] \{DD89\} Dicrescenzo, C.; Duval, D.
    title = "Algebraic extensions and algebraic closure in Scratchpad II",
In Gianni [Gia89], pp440-446 ISBN 3-540-51084-2
LCCN QA76.95.I57 1998 Conference held jointly with AAECC-6
    keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Dingle 94]\{Din94\} Dingle, Adam; Fateman, Richard
    title = "Branch Cuts in Computer Algebra",
1994 ISSAC, Oxford (UK), July 1994
    url = "http://www.cs.berkeley.edu/~fateman/papers/ding.ps",
    paper = "Din94.pdf",
    keywords = "axiomref",
    abstract = "
        Many standard functions, such as the logarithms and square root
        functions, cannot be defined continuously on the complex
        plane. Mistaken assumptions about the properties of these functions
        lead computer algebra systems into various conundrums. We discuss how
        they can manipulate such functions in a useful fashion."
            - ignore -
\bibitem[DLMF] \{DLMF\}.
title = "Digital Library of Mathematical Functions", url = "http://dlmf.nist.gov/software/\#T1",
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Dooley 99]\{Doo99\} Dooley, Sam editor.
ISSAC 99: July 29-31, 1999, Simon Fraser University,
Vancouver, BC, Canada: proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation. ACM Press, New York, NY 10036, USA, 1999. ISBN 1-58113-073-2 LCCN QA76.95.I57 1999
keywords = "axiomref",
- ignore -
```

\bibitem[Dos Reis 12]{DR12} Dos Reis, Gabriel
title = "A System for Axiomatic Programming",
Proc. Conf. on Intelligent Computer Mathematics, Springer (2012)
url = "http://www.axiomatics.org/~}gdr/liz/cicm-2012.pdf"
paper = "DR12.pdf",
keywords = "axiomref",
abstract = "
We present the design and implementation of a system for axiomatic
programming, and its application to mathematical software
construction. Key novelties include a direct support for user-defined
axioms establishing local equality between types, and overload
resolution based on equational theories and user-defined local
axioms. We illustrate uses of axioms, and their organization into
concepts, in structured generic programming as practiced in
computational mathematical systems."
}

```
- ignore -
\bibitem[Doye 97]\{Doy97\} Doye, Nicolas James
title = "Order Sorted Computer Algebra and Coercions",
Ph.D. Thesis University of Bath 1997
```

paper = "Doy97.pdf",
keywords = "axiomref",
abstract = "
Computer algebra systems are large collections of routines for solving
mathematical problems algorithmically, efficiently and above all,
symbolically. The more advanced and rigorous computer algebra systems
(for example, Axiom) use the concept of strong types based on
order-sorted algebra and category theory to ensure that operations are
only applied to expressions when they ''make sense''.
In cases where Axiom uses notions which are not covered by current
mathematics we shall present new mathematics which will allow us to
prove that all such cases are reducible to cases covered by the
current theory. On the other hand, we shall also point out all the
cases where Axiom deviates undesirably from the mathematical ideal.
Furthermore we shall propose solutions to these deviations.
Strongly typed systems (especially of mathematics) become unusable
unless the system can change the type in a way a user expects. We wish
any change expected by a user to be automated, ''natural'', and
unique. ''Coercions'' are normally viewed as ''natural type changing
maps''. This thesis shall rigorously define the word ''coercion'' in
the context of computer algebra systems.
We shall list some assumptions so that we may prove new results so
that all coercions are unique. This concept is called ''coherence''.
We shall give an algorithm for automatically creating all coercions in
type system which adheres to a set of assumptions. We shall prove that
this is an algorithm and that it always returns a coercion when one
exists. Finally, we present a demonstration implementation of this
automated coerion algorithm in Axiom."

```
    - ignore -
\bibitem[Doye 99]\{Doy99\} Doye, Nicolas J.
    title = "Automated coercion for Axiom",
In Dooley [Doo99], pp229-235
ISBN 1-58113-073-2 LCCN QA76.95.I57 1999 ACM Press
    url = "http://www.acm.org/citation.cfm?id=309944",
    keywords = "axiomref",

\section*{— ignore -}
\bibitem[Dominguez 01]\{DR01\} Dom\'inguez, C\'esar; Rubio, Julio title = "Modeling Inheritance as Coercion in a Symbolic Computation System", ISSAC 2001 ACM 1-58113-417-7/01/0007
paper = "DR01.pdf",
keywords = "axiomref", abstract = "

In this paper the analysis of the data structures used in a symbolic computation system, called Kenzo, is undertaken. We deal with the specification of the inheritance relationship since Kenzo is an object-oriented system, written in CLOS, the Common Lisp Object System. We focus on a particular case, namely the relationship between simplicial sets and chain complexes, showing how the order-sorted algebraic specifications formalisms can be adapted, through the ''inheritance as coercion', metaphor, in order to model this Kenzo fragment."
- ignore -
\bibitem[Dunstan 97]\{Dun97\} Dunstan, Martin and Martin, Ursula and Linton, Steve title = "Embedded Verification Techniques for Computer Algebra Systems", Grant citation GR/L48256 Nov 1, 1997-Feb 28, 2001
url = "http://www.cs.st-andrews.ac.uk/research/output/detail?output=ML97.php", keywords = "axiomref",
- ignore -
\bibitem[Adams 01] \{DGKM01\} Adams, Andrew; Dunstan, Martin; Gottliebsen, Hanne; Kelsey, Tom; Martin, Ursula; Owre, Sam title = "Computer Algebra meets Automated Theorem Proving: Integrating Maple and PVS", TPHOLS 2001, Edinburgh
url = "http://www.csl.sri.com/~owre/papers/tphols01/tphols01.pdf",
paper = "DGKM01.pdf",
keywords = "axiomref", abstract = "

We describe an interface between version 6 of the Maple computer algebra system with the PVS automated theorem prover. The interface is designed to allow Maple users access to the robust and checkable proof
```

environment of PVS. We also extend this environment by the provision
of a library of proof strategies for use in real analysis. We
demonstrate examples using the interface and the real analysis
library. These examples provide proofs which are both illustrative and
applicable to genuine symbolic computation problems."

```
- ignore -
\bibitem[Duval 92]\{DJ92\} Duval, D.; Jung, F.
title = "Examples of problem solving using computer algebra", IFIP Transactions. A. Computer Science and Technology, A-2 pp133-141, 1431992 CODEN ITATEC. ISSN 0926-5473
keywords = "axiomref",
\(\qquad\)
— ignore -
\bibitem[Duval 94]\{Duv94\} Duval, Dominique
title = "Symbolic or algebraic computation?",
Madrid Spain, NAG conference (private copy of paper)
keywords = "axiomref",
\(\qquad\)
— axiom.bib -
```

@article{Duva95,
author = "Duval, D.",
title = "Evaluation dynamique et cl\^oture alg\'ebrique en Axiom",
journal = "Journal of Pure and Applied Algebra",
volume = "99",
year = "1995",
pages = "267--295.",
keywords = "axiomref"
}

```

\section*{E}
- ignore -
```

\bibitem[Erocal 10]{ES10} Er\"ocal, Burcin; Stein, William
title = "The Sage Project",
url = "http://wstein.org/papers/icms/icms_2010.pdf",
paper = "ES10.pdf",
keywords = "axiomref",
abstract = "
Sage is a free, open source, self-contained distribution of
mathematical software, including a large library that provides a
unified interface to the components of this distribution. This library
also builds on the components of Sage to implement novel algorithms
covering a broad range of mathematical functionality from algebraic
combinatorics to number theory and arithmetic geometry."

```

\section*{F}
- ignore -
\bibitem[Fateman 90]\{Fat90\} Fateman, R. J.
title = "Advances and trends in the design and construction of algebraic manipulation systems" In Watanabe and Nagata [WN90], pp60-67 ISBN 0-89791-401-5 LCCN QA76.95.I57 1990
keywords = "axiomref",
- ignore -
\bibitem[Fateman 05] \{Fat05\} Fateman, R. J.
title = "An incremental approach to building a mathematical expert out of software", 4/19/2005 \hfill
url = "http://www.cs.berkeley.edu/~fateman/papers/axiom.pdf",
paper = "Fat05.pdf",
keywords = "axiomref",
— ignore -
```

\bibitem[Fateman 06]{Fat06} Fateman, R. J.
title = "Building Algebra Systems by Overloading Lisp",
url = "http://www.cs.berkeley.edu/~}fateman/generic/overload-small.pdf"
paper = "Fat06.pdf",
keywords = "axiomref",
abstract = "
Some of the earliest computer algebra systems (CAS) looked like
overloaded languages of the same era. FORMAC, PL/I FORMAC, Formula
Algol, and others each took advantage of a pre-existing language base
and expanded the notion of a numeric value to include mathematical
expressions. Much more recently, perhaps encouraged by the growth in
popularity of C++, we have seen a renewal of the use of overloading to
implement a CAS.
This paper makes three points. 1. It is easy to do overloading in
Common Lisp, and show how to do it in detail. 2. Overloading per se
provides an easy solution to some simple programming problems. We show
how it can be used for a ''demonstration'' CAS. Other simple and
plausible overloadings interact nicely with this basic system. 3. Not
all goes so smoothly: we can view overloading as a case study and
perhaps an object lesson since it fails to solve a number of
fairly-well articulated and difficult design issues in CAS for which
other approaches are preferable."

```
            - ignore -
\bibitem[Faure 00a]\{FDNOOa\} Faure, Christ\'ele; Davenport, James
    title = "Parameters in Computer Algebra",
    keywords = "axiomref",
            - ignore -
\bibitem[Faure 00b]\{FDNOOb\} Faure, Christ\'ele; Davenport, James;
Naciri, Hanane
    title = "Multi-values Computer Algebra",
ISSN 0249-6399 Institut National De Recherche en Informatique et en
Automatique Sept. 2000 No. 4001
    url = "http://hal.inria.fr/inria-00072643/PDF/RR-4401.pdf",
    paper = "FDNOOb.pdf",
    keywords = "axiomref",
    abstract = "
        One of the main strengths of computer algebra is being able to solve a
family of problems with one computation. In order to express not only one problem but a family of problems, one introduces some symbols which are in fact the parameters common to all the problems of the family.

The user must be able to understand in which way these parameters affect the result when he looks at the answer. Otherwise it may lead to completely wrong calculations, which when used for numerical applications bring nonsensical answers. This is the case in most current Computer Algebra Systems we know because the form of the answer is never explicitly conditioned by the values of the parameters. The user is not even informed that the given answer may be wrong in some cases then computer algebra systems can not be entirely trustworthy. We have introduced multi-valued expressions called \{\sl conditional\} expressions, in which each potential value is associated with a condition on some parameters. This is used, in particular, to capture the situation in integration, where the form of the answer can depend on whether certain quantities are positive, negative or zero. We show that it is also necessary when solving modular linear equations or deducing congruence conditions from complex expressions."

\section*{- ignore -}
\bibitem[Fitch 84]\{Fit84\} Fitch, J. P. (ed)
EUROSAM '84: International Symposium on Symbolic and
Algebraic Computation, Cambridge, England, July 9-11, 1984, volume 174 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany /
Heildelberg, Germany / London, UK / etc., 1984 ISBN 0-387-13350-X
LCCN QA155.7.E4 I57 1984
keywords = "axiomref",
- ignore -
\bibitem[Fitch 93]\{Fit93\} Fitch, J. (ed)
Design and Implementation of Symbolic Computation Systems
International Symposium DISCO '92 Proceedings. Springer-Verlag, Berlin, Germany / Heildelberg, Germany / London, UK / etc., 1993. ISBN 0-387-57272-4 (New York), 3-540-57272-4 (Berlin). LCCN QA76.9.S88I576 1992
keywords = "axiomref",
```

 _ ignore -_
 \bibitem[Fogus 11]{Fog11} Fogus, Michael
title = "UnConj",
url = "http://clojure.com/blog/2011/11/22/unconj.html",
keywords = "axiomref",
~ ignore -
\bibitem[Fortenbacher 90]{For90} Fortenbacher, A.
title = "Efficient type inference and coercion in computer algebra",
In Miola [Mio90], pp56-60. ISBN 0-387-52531-9 (New York), 3-540-52531-9
(Berlin). LCCN QA76.9.S88I576 1990
keywords = "axiomref",
_ ignore -
\bibitem[Fouche 90]{Fou90} Fouche, Francois
title = "Une implantation de l'algorithme de Kovacic en Scratchpad",
Technical report, Institut de Recherche Math{\'{e}}matique Avanc{\'{e}}e''
Strasbourg, France, 1990 31pp
keywords = "axiomref",
_ ignore -
\bibitem[FSF 14]{FSF14} FSF
title = "Free Software Directory",
url = "http://directory.fsf.org/wiki/Axiom",
keywords = "axiomref",

```
\(\qquad\)
```

- ignore -

```
```

\bibitem[Frisco]{Fris} Frisco
title = "Objectives and Results",
url = "http://www.nag.co.uk/projects/frisco/frisco/node3.htm",
keywords = "axiomref",

```
\(\qquad\)

G
— ignore -
\bibitem[Gebauer 86]\{GM86\} Gebauer, R\{\"u\}diger; M\{\"o\}ller, H. Michael title = "Buchberger's algorithm and staggered linear bases",
In Bruce W. Char, editor. Proceedings of the 1986
Symposium on Symbolic and Algebraic Computation: SYMSAC '86, July 21-23, 1986
Waterloo, Ontario, pp218-221 ACM Press, New York, NY 10036, USA, 1986.
ISBN 0-89791-199-7 LCCN QA155.7.E4 A281 1986 ACM order number 505860
keywords = "axiomref",
- ignore -
\bibitem[Gebauer 88] \{GM88\} Gebauer, R.; M\{\"o\}ller, H. M.
title = "On an installation of Buchberger's algorithm",
Journal of Symbolic Computation, 6(2-3) pp275-286 1988
CODEN JSYCEH ISSN 0747-7171
url = "http://www.sciencedirect.com/science/article/pii/S0747717188800488/pdf?md5=f6ccf63002ef
paper = "GM88.pdf",
keywords = "axiomref",
abstract = "
Buchberger's algorithm calculates Groebner bases of polynomial
ideals. Its efficiency depends strongly on practical criteria for detecting superfluous reductions. Buchberger recommends two
criteria. The more important one is interpreted in this paper as a
criterion for detecting redundant elements in a basis of a module of
syzygies. We present a method for obtaining a reduced, nearly minimal
basis of that module. The simple procedure for detecting (redundant
syzygies and )superfluous reductions is incorporated now in our
installation of Buchberger's algorithm in SCRATCHPAD II and REDUCE
3.3. The paper concludes with statistics stressing the good
computational properties of these installations."
- axiom.bib -
```

@book{Gedd92,
author = "Geddes, Keith and Czapor, O. and Stephen R. and Labahn, George",
title = "Algorithms For Computer Algebra",
publisher = "Kluwer Academic Publishers",
isbn = "0-7923-9259-0",
month = "September",
year = "1992",
keywords = "axiomref"
}

```
- ignore -
\bibitem[Gianni 87]\{Gia87\} Gianni, Patrizia title = "Primary Decomposition of Ideals", in [Wit87], pp12-13 keywords = "axiomref",
- ignore -
\bibitem[Gianni 88]\{Gia88\} Gianni, Patrizia.; Trager, Barry.;
Zacharias, Gail. title \(=\) "Gr \obner Bases and Primary Decomposition of Polynomial Ideals",
J. Symbolic Computation 6, 149-167 (1988)
url = "http://www.sciencedirect.com/science/article/pii/S0747717188800403/pdf?md5=40c29b67947035884904fd4!
paper = "Gia88.pdf",
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Gianni 89a]\{Gia89\} Gianni, P. (Patrizia) (ed)
Symbolic and Algebraic Computation.
International Symposium ISSAC '88, Rome, Italy, July 4-8, 1988. Proceedings, volume 358 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany / Heildelberg, Germany / London, UK / etc., 1989. ISBN 3-540-51084-2

LCCN QA76.95.I57 1988 Conference held jointly with AAECC-6
keywords = "axiomref",
- ignore -
\bibitem[Gianni 89b] \{GM89\} Gianni, P.; Mora, T.
title = "Algebraic solution of systems of polynomial equations using \(\operatorname{Gr}\{\backslash\) "o\}bner bases.", In Huguet and Poli [HP89], pp247-257 ISBN 3-540-51082-6 LCCN QA268.A35 1987
keywords = "axiomref",
- ignore -
\bibitem[Gil 92]\{Gil92\} Gil, I.
title = "Computation of the Jordan canonical form of a square matrix (using the Axiom programm
In Wang [Wan92], pp138-145.
ISBN 0-89791-489-9 (soft cover), 0-89791-490-2 (hard cover)
LCCN QA76.95.I59 1992
keywords = "axiomref",
- ignore -
\bibitem[Gomez-Diaz 92]\{Gom92\} G\’omez-D'iaz, Teresa
title = "Quelques applications de l'\'evaluation dynamique",
Ph.D. Thesis L'Universite De Limoges March 1992
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Gomez-Diaz 93] \{Gom93\} G\’omez-D\’iaz, Teresa
title = "Examples of using Dynamic Constructible Closure",
IMACS Symposium SC-1993
paper = "Gom93.pdf",
keywords = "axiomref",
```

abstract = "
We present here some examples of using the ''Dynamic Constructible
Closure'' program, which performs automatic case distinction in
computations involving parameters over a base field K. This program
is an application of the ''Dynamic Evaluation'' principle, which
generalizes traditional evaluation and was first used to deal with
algebraic numbers."

```
- ignore -
\bibitem[Goodwin 91]\{GBL91\} Goodwin, B. M.; Buonopane, R. A.; Lee, A.
    title \(=\) "Using MathCAD in teaching material and energy balance concepts",
In Anonymous [Ano91], pp345-349 (vol. 1) 2 vols.
    keywords = "axiomref",
- ignore -
\bibitem[Golden 4]\{GH84\} Golden, V. Ellen; Hussain, M. A. (eds)
Proceedings of the 1984 MACSYMA Users' Conference:
Schenectady, New York, July 23-25, 1984, General Electric,
Schenectady, NY, USA, 1984
    keywords = "axiomref",
- ignore -
\bibitem[Gonnet 96] \{Gon96\} Gonnet, Gaston H.
    title = "Official verion 1.0 of the Meta Content Dictionary",
    url = "http://www.inf.ethz.ch/personal/gonnet/ContDict/Meta",
    keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Goodloe 93]\{GL93\} Goodloe, A.; Loustaunau, P.
title = "An abstract data type development of graded rings'", In Fitch [Fit93], pp193-202. ISBN 0-387-57272-4 (New York), 3-540-57272-4 (Berlin). LCCN QA76.9.S88I576 1992
keywords = "axiomref",

\section*{- ignore -}
```

\bibitem[Gottliebsen 05]{GKM05} Gottliebsen, Hanne; Kelsey, Tom;
Martin, Ursula
title = "Hidden verification for computational mathematics",
Journal of Symbolic Computation, Vol39, Num 5, pp539-567 (2005)
url = "http://www.sciencedirect.com/science/article/pii/S0747717105000295",
paper = "GKM05.pdf",
keywords = "axiomref",
abstract = "
We present hidden verification as a means to make the power of
computational logic available to users of computer algebra systems
while shielding them from its complexity. We have implemented in PVS a
library of facts about elementary and transcendental function, and
automatic procedures to attempt proofs of continuity, convergence and
differentiability for functions in this class. These are called
directly from Maple by a simple pipe-lined interface. Hence we are
able to support the analysis of differential equations in Maple by
direct calls to PVS for: result refinement and verification, discharge
of verification conditions, harnesses to ensure more reliable
differential equation solvers, and verifiable look-up tables."

```
            - ignore -
\bibitem[Grabe 98] \{Gra98\} Gr\"abe, Hans-Gert
    title = "About the Polynomial System Solve Facility of Axiom, Macyma, Maple Mathematica, MuPAD
    paper \(=\) "Gra98.pdf",
    keywords = "axiomref",
    abstract = "
        We report on some experiences with the general purpose Computer
        Algebra Systems (CAS) Axiom, Macsyma, Maple, Mathematica, MuPAD, and
        Reduce solving systems of polynomial equations and the way they
        present their solutions. This snapshot (taken in the spring of 1996)
        of the current power of the different systems in a special area
            concentrates on both CPU-times and the quality of the output."
- ignore -
\bibitem[Grabmeier 91] \{GHK91\} Grabmeier, J.; Huber, K.; Krieger, U.
title = "Das ComputeralgebraSystem AXIOM bei kryptologischen und verkehrstheoretischen Untersuchungen des Technischer Report TR 75.91.20, IBM Wissenschaftliches
Zentrum, Heidelberg, Germany, 1991
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Grabmeier 92]\{GS92\} Grabmeier, J.; Scheerhorn, A.
title = "Finite fields in Axiom",
AXIOM Technical Report TR7/92 (ATR/5) (NP2522),
Numerical Algorithms Group, Inc., Downer's
Grove, IL, USA and Oxford, UK, 1992
url = "http://www.nag.co.uk/doc/TechRep/axiomtr.html", and Technical Report, IBM Heidelberg Scientific Center, 1992
keywords = "axiomref",
\(\qquad\)
- ignore -
```

\bibitem[Grabmeier 03] {GKW03} Grabmeier, Johannes; Kaltofen, Erich;
Weispfenning, Volker (eds)
Computer algebra handbook: foundations, applications, systems.
Springer-Verlag, Berlin, Germany / Heildelberg, Germany / London, UK / etc.,
2003. ISBN 3-540-65466-6 637pp Includes CDROM
url = "http://www.springer.com/sgw/cda/frontpage/0,11855,1-102-22-1477871-0,00.html",
keywords = "axiomref",

```
\(\qquad\)
- ignore -
\bibitem[Griesmer 71]\{GJ71\} Griesmer, J. H.; Jenks, R.D.
title = "SCRATCHPAD/1 -- an interactive facility for symbolic mathematics", In Petrick [Pet71], pp42-58. LCCN QA76.5.S94 1971
```

 url = "http://delivery.acm.org/10.1145/810000/806266/p42-griesmer.pdf",
 SYMSAC'71 Proc. second ACM Symposium on Symbolic and Algebraic
Manipulation pp45-48
paper = "GJ71.pdf",
ref = "00027",
keywords = "axiomref",
abstract = "
The SCRATCHPAD/1 system is designed to provide an interactive symbolic
computational facility for the mathematician user. The system features
a user language designed to capture the style and succinctness of
mathematical notation, together with a facility for conveniently
introducing new notations into the language. A comprehensive system
library incorporates symbolic capabilities provided by such systems as
SIN, MATHLAB, and REDUCE."

```
            - ignore -
\bibitem[Griesmer 72a]\{GJ72a\} Griesmer, J.; Jenks, R.
    title = "Experience with an online symbolic math system SCRATCHPAD",
in Online'72 [Onl72] ISBN 0-903796-02-3 LCCN QA76.55.054 1972 Two volumes
    keywords = "axiomref",
        - ignore -
\bibitem[Griesmer 72b] \{GJ72b\} Griesmer, James H.; Jenks, Richard D.
    title = "SCRATCHPAD: A capsule view",
ACM SIGPLAN Notices, 7 (10) pp93-102, 1972. Proceedings of the symposium
on Two-dimensional man-machine communications. Mark B. Wells and
James B. Morris (eds.).
    keywords = "axiomref",
            - ignore -
\bibitem[Griesmer 75]\{GJY75\} Griesmer, J.H.; Jenks, R.D.; Yun, D.Y.Y
    title = "SCRATCHPAD User's Manual",
IBM Research Publication RA70 June 1975
    keywords = "axiomref",
- ignore -
\bibitem[Griesmer 76]\{GJY76\} Griesmer, J.H.; Jenks, R.D.; Yun, D.Y.Y title \(=\) "A Set of SCRATCHPAD Examples", April 1976 (private copy)
keywords = "axiomref",
- ignore -
\bibitem[Gruntz 94] \{GM94\} Gruntz, D.; Monagan, M.
title \(=\) "Introduction to Gauss",
SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic
Manipulation), 28(3) pp3-19 August 1994 CODEN SIGSBZ ISSN 0163-5824
keywords = "axiomref",
- ignore -
\bibitem[Gruntz 96]\{Gru96\} Gruntz, Dominik
title = "On Computing Limits in a Symbolic Manipulation System",
Thesis, Swiss Federal Institute of Technology Z\"urich 1996
Diss. ETH No. 11432
url = "http://www.cybertester.com/data/gruntz.pdf",
paper = "Gru96.pdf",
keywords = "axiomref",
abstract = "
This thesis presents an algorithm for computing (one-sided) limits
within a symbolic manipulation system. Computing limtis is an
important facility, as limits are used both by other functions such as
the definite integrator and to get directly some qualitative
information about a given function.
The algorithm we present is very compact, easy to understand and easy
to implement. It overcomes the cancellation problem other algorithms
suffer from. These goals were achieved using a uniform method, namely
by expanding the whole function into a series in terms of its most
rapidly varying subexpression instead of a recursive bottom up
expansion of the function. In the latter approach exact error terms
have to be kept with each approximation in order to resolve the
cancellation problem, and this may lead to an intermediate expression
swell. Our algorithm avoids this problem and is thus suited to be implemented in a symbolic manipulation system."
\(\qquad\)

H
- ignore -
\bibitem[Boyle 88]\{Boyl88\} Boyle, Ann
title = "Future Directions for Research in Symbolic Computation",
Soc. for Industrial and Applied Mathematics, Philadelphia (1990)
url = "http://www.eecis.udel.edu/~caviness/wsreport.pdf", paper = "Boyl88.pdf",
keywords = "axiomref",
- ignore -
```

\bibitem[Hassner 87]{HBW87} Hassner, Martin; Burge, William H.;
Watt, Stephen M.
title = "Construction of Algebraic Error Control Codes (ECC) on the Elliptic Riemann Surface",
in [Wit87], pp5-8
keywords = "axiomref",

```
        - ignore -
    \bibitem[Heck 01]\{Hec01\} Heck, A.
    title = "Variables in computer algebra, mathematics and science",
The International Journal of Computer Algebra in Mathematics Education
Vol. 8 No. 3 pp195-210 (2001)
    keywords = "axiomref",
\(\qquad\)
ignore -
```

\bibitem[Huguet 89]{HP89} Huguet, L.; Poli, A. (eds).
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.
5th International Conference AAECC-5 Proceedings.
Springer-Verlag, Berlin, Germany / Heildelberg, Germany / London, UK / etc.,
1989. ISBN 3-540-51082-6. LCCN QA268.A35 1987
keywords = "axiomref",

```
J
    - ignore -
\bibitem[Jacob 93]\{JOS93\} Jacob, G.; Oussous, N. E.; Steinberg, S. (eds)
Proceedings SC 93
International IMACS Symposium on Symbolic Computation. New Trends and
Developments. LIFL Univ. Lille, Lille France, 1993
    keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Janssen 88]\{Jan88\} Jan\{\ss\}en, R. (ed)
Trends in Computer Algebra, International Symposium
Bad Neuenahr, May 19-21, 1987, Proceedings, volume 296 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany / Heildelberg, Germany / London, UK / etc., 1988 ISBN 3-540-18928-9, 0-387-18928-9 LCCN QA155.7.E4T74 1988
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Jenks 69]\{Jen69\} Jenks, R. D.
title = "META/LISP: An interactive translator writing system",
Research Report International Business Machines, Inc., Thomas J.
Watson Research Center, Yorktown Heights, NY, USA, 1969 RC2968 July 1970 keywords = "axiomref",
- ignore -
\bibitem[Jenks 71]\{Jen71\} Jenks, R. D.
title = "META/PLUS: The syntax extension facility for SCRATCHPAD",
Research Report RC 3259, International Business Machines, Inc., Thomas J.
Watson Research Center, Yorktown Heights, NY, USA, 1971
\% REF:00040
keywords = "axiomref",
- ignore -
\bibitem[Jenks 74]\{Jen74\} Jenks, R. D.
title \(=\) "The SCRATCHPAD language" ,
ACM SIGPLAN Notices, 9(4) pp101-111 1974 CODEN SINODQ. ISSN 0362-1340
keywords = "axiomref",
- ignore -
\bibitem[Jen76]\{Jen76\} Jenks, Richard D.
title = "A pattern compiler",
In Richard D. Jenks, editor,
SYMSAC '76: proceedings of the 1976 ACM Symposium on Symbolic and Algebraic
Computation, August 10-12, 1976, Yorktown Heights, New York, pp60-65,
ACM Press, New York, NY 10036, USA, 1976. LCCN QA155.7.EA .A15 1976
QA9.58.A11 1976
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Jenks 79]\{Jen79\} Jenks, R. D.
title = "MODLISP: An Introduction",
Proc EUROSAM 79, pp466-480, 1979 and IBMRC8073 Jan 1980
keywords = "axiomref",
- ignore -
\bibitem[Jenks 81]\{JT81\} Jenks, R.D.; Trager, B.M.
title = "A Language for Computational Algebra",
Proceedings of SYMSAC81, Symposium on Symbolic and Algebraic Manipulation, Snowbird, Utah August, 1981
keywords = "axiomref",
- ignore -
\bibitem[Jenks 81a]\{JT81a\} Jenks, R.D.; Trager, B.M.
title \(=\) "A Language for Computational Algebra",
SIGPLAN Notices, New York: Association for Computing Machiner, Nov 1981
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Jenks 81b]\{JT81b\} Jenks, R.D.; Trager, B.M.
title = "A Language for Computational Algebra",
IBM Research Report RC8930 IBM Yorktown Heights, NY
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Jenks 84a]\{Jen84a\} Jenks, Richard D.
title = "The new SCRATCHPAD language and system for computer algebra",
In Golden and Hussain [GH84], pp409-??
keywords = "axiomref",
- ignore -
```

\bibitem[Jenks 84b]{Jen84b} Jenks, Richard D.
title = "A primer: 11 keys to New Scratchpad",
In Fitch [Fit84], pp123-147. ISBN 0-387-13350-X LCCN QA155.7.E4 I57 1984
keywords = "axiomref",

```
- ignore -
\bibitem[Jenks 86]\{JWS86\} Jenks, Richard D.; Sutor, Robert S.;
Watt, Stephen M.
    title = "Scratchpad II: An Abstract Datatype System for Mathematical Computation",
Research Report RC 12327 ( \(\backslash \# 55257\) ), Iinternational Business Machines, Inc.,
Thomas J. Watson Research Center, Yorktown Heights, NY, USA, 1986 23pp
    url = "http://www.csd.uwo.ca/~watt/pub/reprints/1987-ima-spadadt.pdf",
    paper = "JWS86.pdf",
    keywords = "axiomref",
    abstract = "
        Scratchpad II is an abstract datatype language and system that is
        under development in the Computer Algebra Group, Mathematical Sciences
        Department, at the IBM Thomas J. Watson Research Center. Some features
        of APL that made computation particularly elegant have been borrowed.
        Many different kinds of computational objects and data structures are
        provided. Facilities for computation include symbolic integration,
        differentiation, factorization, solution of equations and linear
        algebra. Code economy and modularity is achieved by having
        polymorphic packages of functions that may create datatypes. The use
        of categories makes these facilities as general as possible."
            - ignore -
\bibitem[Jenks 87]\{JWS87\} Jenks, Richard D.; Sutor, Robert S.;
Watt, Stephen M.
    title = "Scratchpad II: an Abstract Datatype System for Mathematical Computation'",
Proceedings Trends in Computer Algebra, Bad Neuenahr, LNCS 296,
Springer Verlag, (1987)
    keywords = "axiomref",
```

\bibitem[Jenks 88]{JSW88} Jenks, R. D.; Sutor, R. S.; Watt, S. M.
title = "Scratchpad II: An abstract datatype system for mathematical computation",
In Jan{\ss}en [Jan88],
pp12-?? ISBN 3-540-18928-9, 0-387-18928-9 LCCN QA155.7.E4T74 1988
keywords = "axiomref",

```
    - ignore -
\bibitem[Jenks 88a]\{Jen88a\} Jenks, R. D.
    title \(=\) "A Guide to Programming in BOOT",
Computer Algebra Group, Mathematical Sciences Department, IBM Research
Draft September 5, 1988
    keywords = "axiomref",
    - ignore -
\bibitem[Jenks 88b] \{Jen88b\} Jenks, Richard
    title = "The Scratchpad II Computer Algebra System Interactive Environment Users Guide",
    Spring 1988
    keywords = "axiomref",
                    — ignore -
\bibitem[Jenks 88c]\{JWS88\} Jenks, R. D.; Sutor, R. S.; Watt, S. M.
    title = "Scratchpad II: an abstract datatype system for mathematical computation",
In \(\operatorname{Jan}\{\backslash\) ss \(\} e n\)
[Jan88], pp12-37. ISBN 3-540-18928-9, 0-387-18928-9 LCCN QA155.7.E4T74 1988
    keywords = "axiomref",
— axiom.bib -
@book\{Jenk92,
    author = "Jenks, Richard D. and Sutor, Robert S.",
```

 title = "AXIOM: The Scientific Computation System",
 publisher = "Springer-Verlag, Berlin, Germany",
 year = "1992",
 isbn = "0-387-97855-0",
 keywords = "axiomref"
 }

```
- ignore -
\bibitem[Jenks 94]\{JT94\} Jenks, R. D.; Trager, B. M. title = "How to make AXIOM into a Scratchpad",
In ACM [ACM94], pp32-40 ISBN 0-89791-638-7 LCCN QA76.95.I59 1994 paper = "JT94.pdf", keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Joswig 03]\{JT03\} Joswig, Michael; Takayama, Nobuki
title = "Algebra, geometry, and software systems",
Springer-Verlag ISBN 3-540-00256-1 p291
keywords = "axiomref",
- ignore -
\bibitem[Joyner 06]\{J006\} Joyner, David
title = "OSCAS - Maxima",
SIGSAM Communications in Computer Algebra, 1572006
url = "http://sage.math.washington.edu/home/wdj/sigsam/oscas-cca1.pdf", keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Joyner 14]\{J014\} Joyner, David
```

title = "Links to some open source mathematical programs",
url = "http://www.opensourcemath.org/opensource_math.html",
keywords = "axiomref",

```
\(\qquad\)

K
- ignore -
\bibitem[Kauers 08] \{Kau08\} Kauers, Manuel
title = "Integration of Algebraic Functions: A Simple Heuristic for Finding the Logarithmic Part", ISSAC July 2008 ACM 978-1-59593-904 pp133-140
url = "http://www.risc.jku.at/publications/download/risc_3427/Ka01.pdf", paper = "Kau08.pdf",
keywords = "axiomref",
abstract = "
A new method is proposed for finding the logarithmic part of an integral over an algebraic function. The method uses Gr\{\"o\}bner bases and is easy to implement. It does not have the feature of finding a closed form of an integral whenever there is one. But it very often does, as we will show by a comparison with the built-in integrators of some computer algebra systems."
- ignore -
\bibitem[Keady 94]\{KN94\} Keady, G.; Nolan, G.
title = "Production of Argument SubPrograms in the AXIOM -- NAG link: examples involving nonleanr systems
Technical Report TR1/94
ATR/7 (NP2680), Numerical Algorithms Group, Inc., Downer's Grove, IL, USA and
Oxford, UK, 1994
url = "http://www.nag.co.uk/doc/TechRep/axiomtr.html",
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Kelsey 99]\{Kel99\} Kelsey, Tom
title = "Formal Methods and Computer Algebra: A Larch Specification of AXIOM Categories and Functors",

Ph.D. Thesis, University of St Andrews, 1999
keywords = "axiomref",
- ignore -
\bibitem[Kelsey 00a]\{Kel00a\} Kelsey, Tom
title = "Formal specification of computer algebra",
University of St Andrews, 6th April 2000
url = "http://www.cs.st-andrews.cs.uk/~tom/pub/fscbs.ps", paper = "Kel00a.pdf", keywords = "axiomref", abstract = "

We investigate the use of formal methods languages and tools in the design and development of computer algebra systems (henceforth CAS). We demonstrate that errors in CAS design can be identified and corrected by the use of (i) abstract specifications of types and procedures, (ii) automated proofs of properties of the specifications, and (iii) interface specifications which assist the verification of pre- and post conditions of implemented code."
- ignore -
\bibitem[Kelsey 00b] \{Kel00b\} Kelsey, Tom
title = "Formal specification of computer algebra",
(slides) University of St Andrews, Sept 21, 2000
url = "http://www.cs.st-andrews.cs.uk/~tom/pub/fscbstalk.ps",
keywords = "axiomref",
- ignore -
\bibitem[Kendall 99a] \{Ken99a\} Kendall, W.S.
title = "Itovsn3 in AXIOM: modules, algebras and stochastic differentials", url = "http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/kendall/personal/p keywords = "axiomref",
— ignore -
```

\bibitem[Kendall 99b]{Ken99b} Kendall, W.S.
title = "Symbolic It\^o calculus in AXIOM: an ongoing story",
url = "http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/kendall/personal/ppt/327.ps.g
keywords = "axiomref",

```
\(\qquad\)
- ignore -
\bibitem[Kosleff 91]\{Kos91\} Koseleff, P.-V.
title = "Word games in free Lie algebras: several bases and formulas", Theoretical Computer Science 79(1) pp241-256 Feb. 1991 CODEN TCSCDI ISSN 0304-3975
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Kusche 89]\{KKM89\} Kusche, K.; Kutzler, B.; Mayr, H.
title = "Implementation of a geometry theorem proving package in SCRATCHPAD II", In Davenport [Dav89] pp246-257 ISBN 3-540-51517-8 LCCN QA155.7.E4E86 1987
keywords = "axiomref",

L
- ignore -
\bibitem[Lahey 08] \{Lah08\} Lahey, Tim
title = "Sage Integration Testing",
url = "http://github.com/tjl/sage_int_testing",
year = "2008",
keywords = "axiomref",
- ignore -
```

\bibitem[Lambe 89]{Lam89} Lambe, L. A.
title = "Scratchpad II as a tool for mathematical research",
Notices of the AMS, February 1928 pp143-147
keywords = "axiomref",

```
                    - ignore -
\bibitem[Lambe 91]\{Lam91\} Lambe, L. A.
    title = "Resolutions via homological perturbation",
Journal of Symbolic Computation 12(1) pp71-87 July 1991
CODEN JSYCEH ISSN 0747-7171
    keywords = "axiomref",
                    - ignore -
\bibitem[Lambe 92]\{Lam92\} Lambe, Larry
    title \(=\) "Next Generation Computer Algebra Systems AXIOM and the Scratchpad Concept: Applicatio
\$21~\{st\}\$ Nordic Congress of Mathematicians 1992
    paper \(=\) "Lam92.pdf",
    keywords = "axiomref",
    abstract = "
        One way in which mathematicians deal with infinite amounts of data is
        symbolic representation. A simple example is the quadratic equation
        \(\backslash\left[\mathrm{x}=\backslash \mathrm{frac}\left\{-\mathrm{b} \backslash \mathrm{pm} \backslash \mathrm{sqrt}\left\{\mathrm{b}^{\wedge} 2-4 \mathrm{ac}\right\}\right\}\{2 \mathrm{a}\} \backslash\right]\)
        a formula which uses symbolic representation to describe the solutions
        to an infinite class of equations. Most computer algebra systems can
        deal with polynomials with symbolic coefficients, but what if symbolic
        exponents are called for (e.g. \$1+t^i\$)? What if symbolic limits on
        summations are also called for, for example
        \(\backslash\left[1+t+\backslash l d o t s+t{ }^{-} i=\backslash s u m_{-} j\{t \wedge j\} \backslash\right]\)
        The ''Scratchpad Concept'' is a theoretical ideal which allows the
        implementation of objects at this level of abstraction and beyond in a
        mathematically consistent way. The Axiom computer algebra system is an
        implementation of a major part of the Scratchpad Concept. Axiom
        (formerly called Scratchpad) is a language with extensible
        parameterized types and generic operators which is based on the
        notions of domains and categories. By examining some aspects of the
        Axiom system, the Scratchpad Concept will be illustrated. It will be
        shown how some complex problems in homologicial algebra were solved
        through the use of this system."
- ignore -
\bibitem[Lambe 93] \{Lam93\} Lambe, Larry
title \(=\) "On Using Axiom to Generate Code", (preprint) 1993
keywords = "axiomref",
- ignore -
\bibitem[Lambe 93a] \{LL93\} Lambe, Larry; Luczak, Richard
title = "Object-Oriented Mathematical Programming and Symbolic/Numeric Interface", \$3^\{rd\}\$ International Conf. on Expert Systems in Numerical Computing 1993
paper \(=\) "LL93.pdf",
keywords = "axiomref",
abstract = "
The Axiom language is based on the notions of 'categories',
''domains', and ''packages''. These concepts are used to build an interface between symbolic and numeric calculations. In particular, an interface to the NAG Fortran Library and Axiom's algebra and graphics facilities is presented. Some examples of numerical calculations in a symbolic computational environment are also included using the finite element method. While the examples are elementary, we believe that they point to very powerful methods for combining numeric and symbolic computational techniques."
- ignore -
\bibitem[Lebedev 08]\{Leb08\} Lebedev, Yuri
title = "OpenMath Library for Computing on Riemann Surfaces",
PhD thesis, Nov 2008 Florida State University
url = "http://www.math.fsu.edu/~ylebedev/research/HyperbolicGeometry.html",
keywords = "axiomref",
\(\qquad\)
- ignore -
```

\bibitem[LeBlanc 91]{LeB91} LeBlanc, S.E.
title = "The use of MathCAD and Theorist in the ChE classroom",
In Anonymous [Ano91], pp287-299 (vol. 1) 2 vols.
keywords = "axiomref",

```
        - ignore -
\bibitem[Lecerf 96]\{Le96\} Lecerf, Gr\'egoire
    title = "Dynamic Evaluation and Real Closure Implementation in Axiom",
June 29, 1996
    url = "http://lecerf.perso.math.cnrs.fr/software/drc/drc.ps",
    paper = "Le96.ps",
    keywords = "axiomref",
        - ignore -
```

\bibitem[Lecerf 96a]{Le96a} Lecerf, Gr\'egoire
title = "The Dynamic Real Closure implemented in Axiom",
url = "http://lecerf.perso.math.cnrs.fr/software/drc/drc.ps",
keywords = "axiomref",

```
— ignore -
\bibitem[Levelt 95] \{Lev95\} Levelt, A. H. M. (ed)
ISSAC '95: Proceedings of the 1995 International
Symposium on Symbolic and Algebraic Computation: July 10-12, 1995, Montreal, Canada ISSAC-PROCEEDINGS-1995. ACM Press, New York, NY 10036, USA, 1995 ISBN 0-89791-699-9 LCCN QA76.95 I59 1995 ACM order number 505950
keywords = "axiomref",
- ignore -
\bibitem[Li 06]\{LM06\} Li, Xin; Maza, Marc Moreno
title = "Efficient Implementation of Polynomial Arithmetic in a Multiple-Level Programming Environment", Lecture Notes in
Computer Science Springer Vol 4151/2006 ISBN 978-3-540-38084-9 pp12-23
Proceedings of International Congress of Mathematical Software ICMS 2006
url = "http://www.csd.uwo.ca/~moreno//Publications/Li-MorenoMaza-ICMS-06.pdf",
keywords = "axiomref",
- ignore -
```

\bibitem[Li 10]{YL10} Li, Yue; Dos Reis, Gabriel
title = "A Quantitative Study of Reductions in Algebraic Libraries",
PASCO 2010
url = "http://www.axiomatics.org/~gdr/concurrency/quant-pasco10.pdf",
keywords = "axiomref",

```
- ignore -
\bibitem[Li 11]\{YL11\} Li, Yue; Dos Reis, Gabriel
    title = "An Automatic Parallelization Framework for Algebraic Computation Systems",
ISSAC 2011
    url = "http://www.axiomatics.org/~gdr/concurrency/oa-conc-issac11.pdf",
    paper = "YL11.pdf",
    keywords = "axiomref",
    abstract = "
        This paper proposes a non-intrusive automatic parallelization
        framework for typeful and property-aware computer algebra systems."
\(\qquad\)
- ignore -
\bibitem[Ligatsikas 96]\{Liga96\} Ligatsikas, Zenon; Rioboo, Renaud;
Roy, Marie Francoise
title = "Generic computation of the real closure of an ordered field",
Math. and Computers in Simulation 42 pp 541-549 (1996)
paper = "Liga96.pdf",
keywords = "axiomref",
abstract = "
This paper describes a generalization of the real closure computation
of an ordered field (Rioboo, 1991) enabling to use different technques to code a single real algebraic number."
- ignore -
```

\bibitem[Linton 93]{Lin93} Linton, Steve
title = "Vector Enumeration Programs, version 3.04",
url = "http://www.cs.st-andrews.ac.uk/~ sal/nme/nme_toc.html\#SEC1",
keywords = "axiomref",

```
- ignore -
\bibitem[Liska 97]\{LD97\} Liska, Richard; Drska, Ladislav; Limpouch, Jiri; Sinor, Milan; Wester, Michael; Winkler, Franz title = "Computer Algebra - algorithms, systems and applications", June 2, 1997 url = "http://kfe.fjfi.cvut.cz/~liska/ca/all.html", keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Lucks 86] \{Luc86\} Lucks, Michael
title \(=\) "A fast implementation of polynomial factorization",
In Bruce W. Char, editor, Proceedings of the 1986 Symposium on Symbolic and Algebraic Computation: SYMSAC '86, July 21-23, 1986, Waterloo, Ontario, pp228-232 ACM Press, New York, NY 10036, USA, 1986. ISBN 0-89791-199-7
LCCN QA155.7.E4 A281 1986 ACM order number 505860
keywords = "axiomref",
- ignore -
\bibitem[Lueken 77]\{Lue77\} Lueken, E.
title = "Ueberlegungen zur Implementierung eines Formelmanipulationssystems",
```

Master's thesis, Technischen Universit{\"{a}}t Carolo-Wilhelmina zu
Braunschweig. Braunschweig, Germany, 1977
keywords = "axiomref",
-
- ignore -
\bibitem[Lynch 91]{LM91} Lynch, R.; Mavromatis, H. A.
title = "New quantum mechanical perturbation technique using an 'electronic scratchpad' on an inexpensive
American Journal of Pyhsics, 59(3) pp270-273, March 1991.
CODEN AJPIAS ISSN 0002-9505
keywords = "axiomref",

```
M
    - ignore -
\bibitem[Mahboubi 05] \{Mah05\} Mahboubi, Assia
    title = "Programming and certifying the CAD algorithm inside the coq system",
Mathematics, Algorithms, Proofs, volume 05021 of Dagstuhl
Seminar Proceedings, Schloss Dagstuhl (2005)
    keywords = "axiomref",
                    - ignore -
\bibitem[Mathews 89]\{Mat89\} Mathews, J.
    title = "Symbolic computational algebra applied to Picard iteration",
Mathematics and computer education, 23(2) pp117-122 Spring 1989 CODEN MCEDDA,
ISSN 0730-8639
    keywords = "axiomref",
\(\qquad\)
            - ignore -
```

\bibitem[McJones 11]{McJ11} McJones, Paul
title = "Software Presentation Group -- Common Lisp family",
url = "http://www.softwarepreservation.org/projects/LISP/common_lisp_family",
keywords = "axiomref",

```
\(\qquad\)
- ignore -
\bibitem[Melachrinoudis 90]\{MR90\} Melachrinoudis, E.; Rumpf, D. L. title = "Teaching advantages of transparent computer software -- MathCAD", CoED, 10(1) pp71-76, January-March 1990 CODEN CWLJDP ISSN 0736-8607 keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Miola 90]\{Mio90\} Miola, A. (ed)
title \(=\) "Design and Implementation of Symbolic Computation Systems",
International Symposium DISCO '90, Capri, Italy, April 10-12, 1990, Proceedings volume 429 of Lecture Notes in Cmputer Science,
Springer-Verlag, Berlin, Germany / Heildelberg, Germany / London, UK / etc., 1990 ISBN 0-387-52531-9 (New York), 3-540-52531-9 (Berlin) LCCN QA76.9.S88I576 1990
keywords = "axiomref",
- ignore -
\bibitem[Miola 93] \{Mio93\} Miola, A. (ed)
title \(=\) "Design and Implementation of Symbolic Computation Systems",
International Symposium DISCO '93 Gmunden, Austria, September 15-17, 1993:
Proceedings.
Springer-Verlag, Berlin, Germany / Heildelberg, Germany / London, UK / etc.,
1993 ISBN 3-540-57235-X LCCN QA76.9.S88I576 1993
keywords = "axiomref",
- ignore -
```

\bibitem[Missura 94]{Miss94} Missura, Stephan A.; Weber, Andreas
title = "Using Commutativity Properties for Controlling Coercions",
url = "http://cg.cs.uni-bonn.de/personal-pages/weber/publications/pdf/WeberA/MissuraWeber94a.pdf",
paper = "Miss94.pdf",
keywords = "axiomref",
abstract = "
This paper investigates some soundness conditions which have to be
fulfilled in systems with coercions and generic operators. A result of
Reynolds on unrestricted generic operators is extended to generic
operators which obey certain constraints. We get natural conditions
for such operators, which are expressed within the theoretic framework
of category theory. However, in the context of computer algebra, there
arise examples of coercions and generic operators which do not fulfil
these conditions. We describe a framework -- relaxing the above
conditions -- that allows distinguishing between cases of ambiguities
which can be resolved in a quite natural sense and those which
cannot. An algorithm is presented that detects such unresolvable
ambiguities in expressions."

```
            - ignore -
\bibitem[Monagan 87] \{Mon87\} Monagan, Michael B.
    title = "Support for Data Structures in Scratchpad II",
in [Wit87], pp17-18
    keywords = "axiomref",
    - ignore -
\bibitem[Monagan 93] \{Mon93\} Monagan, M. B.
    title = "Gauss: a parameterized domain of computation system with support for signature functions",
In Miola [Mio93], pp81-94 ISBN 3-540-57235-X LCCN QA76.9.S88I576 1993
    keywords = "axiomref",
    - ignore -
\bibitem[Mora 89] \{Mor89\} Mora, T. (ed)
Applied Algebra, Algebraic Algorithms and Error-Correcting
```

Codes, 6th International Conference, AAECC-6, Rome, Italy, July 4-8, 1998,
Proceedings, volume 357 of Lecture Notes in Computer Science
Springer-Verlag, Berlin, Germany / Heildelberg, Germany / London, UK / etc.,
1989 ISBN 3-540-51083-4, LCCN QA268.A35 1988 Conference held jointly with
ISSAC '88
keywords = "axiomref",

```
                            - ignore -
\bibitem[Moses 71] \{Mos71\} Moses, Joel
    title = "Algebraic Simplification: A Guide for the Perplexed",
CACM August 1971 Vol 14 No. 8 pp527-537
    keywords = "axiomref",
- ignore -
\bibitem[Moses 08] \{Mos08\} Moses, Joel
    title = "Macsyma: A Personal History",
Invited Presentation in Milestones in Computer Algebra, May 2008, Tobago
    url = "http://esd.mit.edu/Faculty_Pages/moses/Macsyma.pdf",
    paper \(=\) "Mos08.pdf",
    keywords = "axiomref",
    abstract = "
    The Macsyma system arose out of research on mathematical software in
        the AI group at MIT in the 1960's. Algorithm development in symbolic
        integration and simplification arose out of the interest of people,
        such as the author, who were also mathematics students. The later
        development of algorithms for the GCD of sparse polynomials, for
        example, arose out of the needs of our user community. During various
        times in the 1970's the computer on which Macsyma ran was one of the
        most popular notes on the ARPANET. We discuss the attempts in the late
        70's and the 80's to develop Macsyma systems that ran on popular
        computer architectures. Finally, we discuss the impact of the
        fundamental ideas in Macsyma on current research on large scale
        engineering systems."

\section*{N}

\section*{- ignore -}
\bibitem[Naylor] \{NPxx\} Naylor, William; Padget, Julian
title = "From Untyped to Polymorphically Typed Objects in Mathematical Web Services", paper = "NPxx.pdf",
keywords = "axiomref",
abstract = "
OpenMath is a widely recognized approach to the semantic markup of mathematics that is often used for communication between OpenMath compliant systems. The Aldor language has a sophisticated category-based type system that was specifically developed for the purpose of modelling mathematical structures, while the system itself supports the creation of small-footprint applications suitable for deployment as web services. In this paper we present our first results of how one may perform translations from generic OpenMath objects into values in specific Aldor domains, describing how the Aldor interfae domain ExpresstionTree is used to achieve this. We outline our Aldor implementation of an OpenMath translator, and describe an efficient extention of this to the Parser category. In addition, the Aldor service creation and invocation mechanism are explained. Thus we are in a position to develop and deploy mathematical web services whose descriptions may be directly derived from Aldor's rich type language."

\section*{- ignore -}
```

\bibitem[Naylor 95]{N95} Naylor, Bill
title = "Symbolic Interface for an advanced hyperbolic PDE solver",
url = "http://www.sci.csd.uwo.ca/~bill/Papers/symbInterface2.ps",
paper = "N95.pdf",
keywords = "axiomref",
abstract = "
An Axiom front end is described, which is used to generate
mathematical objects needed by one of the latest NAG routines, to be
included in the Mark 17 version of the NAG Numerical library. This
routine uses powerful techniques to find the solution to Hyperbolic
Partial Differential Equations in conservation form and in one spatial
dimension. These mathematical objects are non-trivial, requiring much
mathematical knowledge on the part of the user, which is otherwise
irrelvant to the physical problem which is to be solved. We discuss
the individual mathematical objects, considering the mathematical
theory which is relevant, and some of the problems which have been
encountered and solved during the FORTRAN generation necessary to
realise the object. Finally we display some of our results."

```
- ignore -
```

\bibitem[Naylor 00b]{ND00} Naylor, W.A.; Davenport, J.H.
title = "A Monte-Carlo Extension to a Category-Based Type System",
url = "http://www.sci.csd.uwo.ca/~bill/Papers/monteCarCat3.ps",
paper = "NDOO.pdf",
keywords = "axiomref",
abstract = "
The normal claim for mathematics is that all calculations are 100\%
accurate and therefore one calculation can rely completely on the
results of sub-calculations, hoever there exist {\sl Monte-Carlo}
algorithms which are often much faster than the equivalent
deterministic ones where the results will have a prescribed
probability (presumably small) of being incorrect. However there has
been little discussion of how such algorithms can be used as building
blocks in Computer Algebra. In this paper we describe how the
computational category theory which is the basis of the type structure
used in the Axiom computer algebra system may be extended to cover
probabilistic algorithms, which use Monte-Carlo techniques. We follow
this with a specific example which uses Straight Line Program
representation."

```
                            - ignore -
\bibitem[Norman 75] \{Nor75\} Norman, A. C.
    title = "Computing with formal power series",
ACM Transactions on Mathematical Software, 1(4) pp346-356
Dec. 1975 CODEN ACMSCU ISSN 0098-3500
    keywords = "axiomref",
    - ignore -
\bibitem[Norman 75a]\{Nor75a\} Norman, A.C.
    title \(=\) "The SCRATCHPAD Power Series Package",
IBM T.J. Watson Research RC4998
    keywords = "axiomref",
```

O

- ignore -
\bibitem[Ollivier 89]{01l89} Ollivier, F.
title = "Inversibility of rational mappings and structural identifiablility in automatics",
In ACM [ACM89], pp43-54 ISBN 0-89791-325-6 LCCN QA76.95.I59 1989
keywords = "axiomref",
_ ignore -

```
```

\bibitem[Online 72]{Onl72}.

```
\bibitem[Online 72]{Onl72}.
Online 72: conference proceedings ... international conference on online
Online 72: conference proceedings ... international conference on online
interactive computing, Brunel University, Uxbridge, England, 4-7 September
interactive computing, Brunel University, Uxbridge, England, 4-7 September
1972 ISBN 0-903796-02-3 LCCN QA76.55.054 1972 Two volumes.
1972 ISBN 0-903796-02-3 LCCN QA76.55.054 1972 Two volumes.
    keywords = "axiomref",
```

 keywords = "axiomref",
    ```
\(\qquad\)
```

 _ ignore -
 \bibitem[OpenMath] {OpenMa}.
title = "OpenMath Technical Overview",
url = "http://www.openmath.org/overview/technical.html",
keywords = "axiomref",

```
\(\qquad\)
```

P

- ignore -
\bibitem[Page 07]\{Pa07\} Page, William S.
title = "Axiom - Open Source Computer Algebra System",
Poster ISSAC 2007 Proceedings Vol 41 No 3 Sept 2007 p114 keywords = "axiomref",

```
```

 - ignore -
 \bibitem[Petitot 90]{Pet90} Petitot, Michel
title = "Types r\'ecursifs en scratchpad, application aux polyn\^omes non commutatifs",
LIFL, }199
keywords = "axiomref",

```
\(\qquad\)
```

- ignore -
\bibitem[Petitot 93]{Pet93} Petitot, M.
title = "Experience with Axiom",
In Jacob et al. [JOS93], page 240
keywords = "axiomref",
 - ignore -

```
\bibitem[Petric 71]\{Pet71\} Petric, S. R. (ed)
Proceedings of the second symposium on Symbolic and
Algebraic Manipulation, March 23-25, 1971, Los Angeles, California, ACM Press,
New York, NY 10036, USA, 1971. LCCN QA76.5.S94 1971
    keywords = "axiomref",
    - ignore -
\bibitem[Pinch 93]\{Pin93\} Pinch, R.G.E.
    title = "Some Primality Testing Algorithms",
Devlin, Keith (ed.)
Computers and Mathematics November 1993, Vol 40, Number 9 pp1203-1210
    keywords = "axiomref",
    - ignore -
```

\bibitem[Poll (b)]{Polxx} Poll, Erik
title = "The type system of Axiom",
paper = "Polxx.pdf",
keywords = "axiomref",

```
\(\qquad\)
```

 - ignore -
 \bibitem[Purtilo 86]{Pur86} Purtilo, J.
title = "Applications of a software interconnection system in mathematical problem solving environments",
In Bruce W. Char, editor. Proceedings of the
1 9 8 6 Symposium on Symbolic and Algebraic Computation: SYMSAC '86, July 21-23,
ACM Press, New York, NY 10036, USA, 1986. ISBN 0-89791-199-7 LCCN QA155.7.E4
A281 1986 ACM order number 505860
keywords = "axiomref",

```
R
    - ignore -
\bibitem[Rainer 14]\{Rain14\} Joswig, Rainer
    title \(=\) "2014: 30+ Years Common Lisp the Language",
    url = "http://lispm.de/30ycltl",
    keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Rioboo 03a]\{Riob03a\} Rioboo, Renaud title = "Quelques aspects du calcul exact avec des nombres r\'eels",
Ph.D. Thesis, Laboratoire d'Informatique Th\'eorique et Programmationg paper \(=\) "Riob03a.ps",
paper \(=\) "Riob03a.pdf", keywords = "axiomref",
```

\bibitem[Rioboo 03]{Riob03} Rioboo, Renaud
title = "Towards Faster Real Algebraic Numbers",
J. of Symbolic Computation 36 pp 513-533 (2003)
paper = "Riob03.pdf",
keywords = "axiomref",
abstract = "
This paper presents a new encoding scheme for real algebraic number
manipulations which enhances current Axiom's real closure. Algebraic
manipulations are performed using different instantiations of
sub-resultant-like algorithms instead of Euclidean-like algorithms.
We use these algorithms to compute polynomial gcds and Bezout
relations, to compute the roots and the signs of algebraic
numbers. This allows us to work in the ring of real algebraic integers
instead of the field of read algebraic numbers avoiding many
denominators."
_ ignore -
\bibitem[Robidoux 93]{Rob93} Robidoux, Nicolas
title = "Does Axiom Solve Systems of O.D.E's Like Mathematica?",
July }199
paper = "Rob93.pdf",
keywords = "axiomref",
abstract = "
If I were demonstrating Axiom and were asked this question, my reply
would be ''No, but I am not sure that this is a bad thing''. And I
would illustrate this with the following example.
Consider the following system of O.D.E.'s

$$
\begin{array}{rcl}
 \frac{dx_1}{dt} & = & \left(1+\frac{cos t}{2+sin t}\right)x_1\\
 \frac{dx_2}{dt} & = & x_1 - x_2
 \end{array}
$$

 This is a very simple system: x_1 is actually uncoupled from x_2"
    ```
                        - ignore -
    \bibitem[Rioboo 92]\{Rio92\} Rioboo, R.
    title = "Real algebraic closure of an ordered field, implementation in Axiom",
    In Wang [Wan92], pp206-215 ISBN 0-89791-489-9 (soft cover)
```

0-89791-490-2 (hard cover) LCCN QA76.95.I59 1992
paper = "Rio92.pdf",
keywords = "axiomref",
abstract = "
Real algebraic numbers appear in many Computer Algebra problems. For
instance the determination of a cylindrical algebraic decomposition
for an euclidean space requires computing with real algebraic numbers.
This paper describes an implementation for computations with the real
roots of a polynomial. This process is designed to be recursively
used, so the resulting domain of computation is the set of all real
algebraic numbers. An implementation for the real algebraic closure
has been done in Axiom (previously called Scratchpad)."

```
    - ignore -
\bibitem[Roesner 95] \{Roe95\} Roesner, K. G.
    title = "Verified solutions for parameters of an exact solution for non-Newtonian liquids using computer
Zeitschrift fur Angewandte
Mathematik und Physik, 75 (suppl. 2):S435-S438, 1995 ISSN 0044-2267
    keywords = "axiomref",
S
    - ignore -
\bibitem[Sage 14]\{Sage14\} Stein, William
    title = "Sage",
    url = "http://www.sagemath.org/doc/reference/interfaces/sage/interfaces/axiom.html",
    keywords = "axiomref",
                    - ignore -
\bibitem[Salvy 89]\{Sal89\} Salvy, B.
    title = "Examples of automatic asymptotic expansions",
Technical Report 114,
Inst. Nat. Recherche Inf. Autom., Le Chesnay, France, Dec. 1989 18pp
```

keywords = "axiomref",

```
\(\qquad\)
```

- ignore -
\bibitem[Salvy 91]\{Sal91\} Salvy, B.
title = "Examples of automatic asymptotic expansions", SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation), 25(2) pp4-17
April 1991 CODEN SIGSBZ ISSN 0163-5824
keywords = "axiomref",

```
- axiom.bib -
```

@article{Saun80,
author = "Saunders, B. David",
title = "A Survey of Available Systems",
journal = "SIGSAM Bull.",
issue_date = "November 1980",
volume = "14",
number = "4",
month = "November",
year = "1980",
issn = "0163-5824",
pages = "12--28",
numpages = "17",
url = "http://doi.acm.org/10.1145/1089235.1089237",
doi = "10.1145/1089235.1089237",
acmid = "1089237",
publisher = "ACM",
address = "New York, NY, USA",
keywords = "axiomref,survey",
paper = "Saun80.pdf",
}

```
- ignore -
\bibitem[Schu 92]\{Sch92\} Sch\"u, J.
```

 title = "Implementing des Cartan-Kuranishi-Theorems in AXIOM",
 Master's diploma thesis (in german), Institut f\"ur Algorithmen und
Kognitive Systeme, Universit\"t Karlsruhe }199
keywords = "axiomref",
_ ignore -
\bibitem[Schwarz 88]{Sch88} Schwarz, F.
title = "Programming with abstract data types: the symmetry package SPDE in Scratchpad'",
In Jan{\ss}en [Jan88], pp167-176, ISBN 3-540-18928-9,
0-387-18928-9 LCCN QA155.7.E4T74 1988
keywords = "axiomref",

```
\(\qquad\)
```

- ignore -
\bibitem[Schwarz 89]{Sch89} Schwarz, F.
title = "A factorization algorithm for linear ordinary differential equations",
In ACM [ACM89], pp17-25 ISBN 0-89791-325-6 LCCN QA76.95.I59 1989
keywords = "axiomref",
 - ignore -
\bibitem[Schwarz 91]{Sch91} Schwarz, F.
title = "Monomial orderings and Gr{\"o}bner bases",
SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic
Manipulation) 2591) pp10-23 Jan. }1991\mathrm{ CODEN SIGSBZ ISSN 0163-5824
keywords = "axiomref",
_ ignore -
\bibitem[Seiler 94]{Sei94} Seiler, Werner Markus
title = "Analysis and Application of the Formal Theory of Partial Differential Equations",
PhD thesis, School of Physics and Materials, Lancaster University (1994)

```
```

url = "http://www.mathematik.uni-kassel.de/~}\mp@subsup{~}{e}{\prime
paper = "Sei94.pdf",
keywords = "axiomref",
abstract = "
An introduction to the formal theory of partial differential equations
is given emphasizing the properties of involutive symbols and
equations. An algorithm to complete any differential equation to an
involutive one is presented. For an involutive equation possible
values for the number of arbitrary functions in its general solution
are determined. The existence and uniqueness of solutions for analytic
equations is proven. Applications of these results include an
analysis of symmetry and reduction methods and a study of gauge
systems. It is show that the Dirac algorithm for systems with
constraints is closely related to the completion of the equation of
motion to an involutive equation. Specific examples treated comprise
the Yang-Mills Equations, Einstein Equations, complete and Jacobian
systems, and some special models in two and three dimensions. To
facilitate the involved tedious computations an environment for
geometric approaches to differential equations has been developed in
the computer algebra system Axiom. The appendices contain among others
brief introductions into Carten-K{\"a}hler Theory and Janet-Riquier
Theory."

```
    - ignore -
\bibitem[Seiler 94a]\{Sei94a\} Seiler, W.M.
    title = "Completion to involution in AXIOM",
in Calmet [Cal94] pp103-104
    keywords = "axiomref",
- ignore -
\bibitem[Sieler 94b]\{Sei94b\} Seiler, W.M.
title = "Pseudo differential operators and integrable systems in AXIOM", Computer Physics Communications, 79(2) pp329-340 April 1994 CODEN CPHCBZ ISSN 0010-4655 paper = "Sei94b.pdf", keywords = "axiomref", abstract = "

An implementation of the algebra of pseudo differential operators in the computer algebra system Axiom is described. In several exmaples
the application of the package to typical computations in the theory
```

of integrable systems is demonstrated."

```
- ignore -
\bibitem[Seiler 95] \{Sei95\} Seiler, W.M.
    title = "Applying AXIOM to partial differential equations",
Internal Report 95-17, Universit\"at Karlsruhe, Fakult\"at f\"ur Informatik
1995
    paper = "Sei95.pdf",
    keywords = "axiomref",
    abstract = "
        We present an Axiom environment called JET for geometric computations
        with partial differential equations within the framework of the jet
        bundle formalism. This comprises expecially the completion of a given
        differential equation to an involutive one according to the
        Cartan-Kuranishi Theorem and the setting up of the determining system
        for the generators of classical and non-classical Lie
        symmetries. Details of the implementations are described and
        applications are given. An appendix contains tables of all exported
        functions."
\(\qquad\)
- ignore -
\bibitem[Seiler 95b] \{SC95\} Seiler, W.M.; Calmet, J.
title = "JET -- An Axiom Environment for Geometric Computations with Differential Equations",
paper = "SC95.pdf",
keywords = "axiomref",
abstract = "
JET is an environment within the computer algebra system Axiom to perform such computations. The current implementation emphasises the two key concepts involution and symmetry. It provides some packages for the completion of a given system of differential equations to an equivalent involutive one based on the Cartan-Kuranishi theorem and for setting up the determining equations for classical and non-classical point symmetries."
```

\bibitem[Seiler 97]{Sei97} Seiler, Werner M.
title = "Computer Algebra and Differential Equations: An Overview",
url = "http://www.mathematik.uni-kassel.di/~seiler/Papers/Postscript/CADERep.ps.gz",
keywords = "axiomref",
abstract = "
We present an informal overview of a number of approaches to
differential equations which are popular in computer algebra. This
includes symmetry and completion theory, local analysis, differential
ideal and Galois theory, dynamical systems and numerical analysis. A
large bibliography is provided."

```
- ignore -
\bibitem[Seiler (a)]\{Seixx\} Seiler, W.M.
title = "DETools: A Library for Differential Equations", url = "http://iaks-www.ira.uka.de/iaks-calmet/werner/werner.html", keywords = "axiomref",
- ignore -
\bibitem[Shannon 88]\{SS88\} Shannon, D.; Sweedler, M.
title = "Using Gr\{\"o\}bner bases to determine algebra membership, split surjective algebra hom Journal of Symbolic Computation 6(2-3) pp267-273
Oct.-Dec. 1988 CODEN JSYCEH ISSN 0747-7171
keywords = "axiomref",
- ignore -
\bibitem[Sit 89]\{Sit89\} Sit, W.Y.
title = "On Goldman's algorithm for solving first-order multinomial autonomous systems",
In Mora [Mor89], pp386-395 ISBN 3-540-51083-4
LCCN QA268.A35 1998 Conference held jointly with ISSAC '88
keywords = "axiomref",
- ignore -
\bibitem[Sit 92]\{Sit92\} Sit, W.Y.
title = "An algorithm for solving parametric linear systems",
Journal of Symbolic Computations, 13(4) pp353-394, April 1992 CODEN JSYCEH ISSN 0747-7171
url = "http://www.sciencedirect.com/science/article/pii/S0747717108801046/pdf?md5=00aa65e18e6ea5c4a008c8d
paper = "Sit92.pdf",
keywords = "axiomref",
abstract = "
We present a theoretical foundation for studying parametric systesm of linear equations and prove an efficient algorithm for identifying all parametric values (including degnerate cases) for which the system is consistent. The algorithm gives a small set of regimes where for each regime, the solutions of the specialized systems may be given uniformly. For homogeneous linear systems, or for systems were the right hand side is arbitrary, this small set is irredunant. We discuss in detail practical issues concerning implementations, with particular emphasis on simplification of results. Examples are given based on a close implementation of the algorithm in SCRATCHPAD II. We also give a complexity analysis of the Gaussian elimination method and compare that with our algorithm."
- ignore -
```

\bibitem[Sit 06]{Sit06} Sit, Emil
title = "Tools for Repeatable Research",
url = "http://www.emilsit.net/blog/archives/tools-for-repeatable-research",
keywords = "axiomref",

```
                    — ignore -
\bibitem[Smedley 92]\{Sme92\} Smedley, Trevor J.
    title = "Using pictorial and object oriented programming for computer algebra",
In Hal Berghel et al., editors. Applied computing --
technologicial challenges of the 199s: proceedings of the 1992 ACM/SIGAPP
Symposium on Applied Computing, Kansas City Convention Center, March 1-3, 1992
pp1243-1247. ACM Press, New York, NY 10036, USA, 1992. ISBN 0-89791-502-X
LCCN QA76.76.A65 S95 1992
    keywords = "axiomref",
- ignore -
```

\bibitem[Smith 07]{SDJ07} Smith, Jacob; Dos Reis, Gabriel; Jarvi, Jaakko
title = "Algorithmic differentiation in Axiom",
ACM SIGSAM ISSAC Proceedings 2007 Waterloo, Canada 2007 pp347-354
ISBN 978-1-59593-743-8
paper = "SDJ07.pdf",
keywords = "axiomref",
abstract = "
This paper describes the design and implementation of an algorithmic
differentiation framework in the Axiom computer algebra system. Our
implementation works by transformations on Spad programs at the level
of the typed abstract syntax tree."

```
    - ignore -
\bibitem[SSC92] \{SSC92\}.
    title = "Algorithmic Methods For Lie Pseudogroups'",
In N. Ibragimov, M. Torrisi and A. Valenti, editors, Proc. Modern Group
Analysis: Advanced Analytical and Computational Methods in Mathematical
Physics, pp337-344, Acireale (Italy), 1992 Kluwer, Dordrecht 1993
    url = "http://iaks-www.ira.uka.de/iaks-calmet/werner/Papers/Acireale92.ps.gz",
    keywords = "axiomref",
    - ignore -
\bibitem[SSV87]\{SSV87\} Senechaud, P.; Siebert, F.; Villard G.
    title = "Scratchpad II: \(\operatorname{Pr}\{\backslash ' e\} s e n t a t i o n ~ d ' u n ~ n o u v e a u ~ l a n g a g e ~ d e ~ c a l c u l ~ f o r m e l ", ~\)
Technical Report 640-M, TIM 3 (IMAG), Grenoble, France, Feb 1987
    keywords = "axiomref",
            - ignore -
\bibitem[Steele]\{Steele\} Steele, Guy L.; Gabriel, Richard P.
    title \(=\) "The Evolution of Lisp",
    url = "http://www.dreamsongs.com/Files/HOPL2-Uncut.pdf",
    keywords = "axiomref",
- ignore -
\bibitem[Sutor 85]\{Sut85\} Sutor, R.S.
title = "The Scratchpad II computer algebra language and system", In Buchberger and Caviness [BC85], pp32-33 ISBN 0-387-15983-5 (vol. 1), 0-387-15984-3 (vol. 2) LCCN QA155.7.E4 E86 1985 Two volumes.
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Sutor 87a]\{SJ87a\} Sutor, R. S.; Jenks, R. D.
title = "The type inference and coercion facilities in the Scratchpad II interpreter",
In Wexelblat [Wex87], pp56-63
ISBN 0-89791-235-7 LCCN QA76.7.S54 v22:7 SIGPLAN Notices, v22 n7 (July 1987)
paper = "SJ87a.pdf",
keywords = "axiomref",
- ignore -
\bibitem[Sutor 87b] \{Su87\} Sutor, Robert S.
title = "The Scratchpad II Computer Algebra System. Using and Programming the Interpreter", IBM Course presentation slide deck Spring 1987
keywords = "axiomref",
- ignore -
\bibitem[Sutor 87c] \{SJ87c\} Sutor, Robert S.; Jenks, Richard
title = "The type inference and coercion facilities in the Scratchpad II interpreter'", Research report RC 12595 (\\#56575),
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA, 1987, 11pp
paper \(=\) "SJ87c.pdf",
keywords = "axiomref",
abstract = "
The Scratchpad II system is an abstract datatype programming language,

\title{
a compiler for the language, a library of packages of polymorphic functions and parameterized abstract datatypes, and an interpreter that provides sophisticated type inference and coercion facilities. Although originally designed for the implementation of symbolic mathematical algorithms, Scratchpad II is a general purpose programming language. This paper discusses aspects of the implementation of the intepreter and how it attempts to provide a user friendly and relatively weakly typed front end for the strongly typed programming language."
}
- ignore -
\bibitem[Sutor 88]\{Su88\} Sutor, Robert S.
title = "A guide to programming in the scratchpad 2 interpreter", IBM Manual, March 1988
keywords = "axiomref",

\section*{T}
- ignore -
```

\bibitem[Thompson 00]{Tho00} Thompson, Simon
title = "Logic and dependent types in the Aldor Computer Algebra System",
paper = "Tho00.pdf",
keywords = "axiomref",
abstract = "
We show how the Aldor type system can represent propositions of
first-order logic, by means of the 'propositions as types'
correspondence. The representation relies on type casts (using
pretend) but can be viewed as a prototype implementation of a modified
type system with {\sl type evaluation} reported elsewhere. The logic
is used to provide an axiomatisation of a number of familiar Aldor
categories as well as a type of vectors."

```
            - ignore -

\footnotetext{
\bibitem[Thompson (a)]\{TTxx\} Thompson, Simon; Timochouk, Leonid
}
```

title = "The Aldor\-\- language",
paper = "TTxx.pdf",
keywords = "axiomref",
abstract = "
This paper introduces the \verb|Aldor--| language, which is a
functional programming language with dependent types and a powerful,
type-based, overloading mechanism. The language is built on a subset
of Aldor, the 'library compiler' language for the Axiom computer
algebra system. \verb|Aldor--| is designed with the intention of
incorporating logical reasoning into computer algebra computations.
The paper contains a formal account of the semantics and type system
of \verb|Aldor--|; a general discussion of overloading and how the
overloading in \verb|Aldor--| fits into the general scheme; examples
of logic within \verb|Aldor--| and notes on the implementation of the
system."
_ ignore -
\bibitem[Touratier 98]{Tou98} Touratier, Emmanuel
title = "Etude du typage dans le syst\'eme de calcul scientifique Aldor",
Universit\'e de Limoges }199
paper = "Tou98.pdf",
keywords = "axiomref",
V

- ignore -
\bibitem[van der Hoeven 14] \{JvdH14\} van der Hoeven, Joris title = "Computer algebra systems and TeXmacs", url = "http://www.texmacs.org/tmweb/plugins/cas.en.html", keywords = "axiomref",

```
\(\qquad\)
— axiom.bib -
@article\{Hoei94,
```

 author = "{van Hoeij}, M.",
 title = "An algorithm for computing an integral basis in an algebraic
 function field",
 journal = "Journal of Symbolic Computation",
 volume = "18",
 number = "4",
 year = "1994",
 pages = "353-363",
 issn = "0747-7171",
 keywords = "axiomref",
 paper = "Hoei94.pdf",
 abstract = "
 Algorithms for computing integral bases of an algebraic function field
 are implemented in some computer algebra systems. They are used e.g.
 for the integration of algebraic functions. The method used by Maple
 5.2 and AXIOM is given by Trager in [Trag84]. He adapted an algorithm
 of Ford and Zassenhaus [Ford, 1978], that computes the ring of
 integers in an algebraic number field, to the case of a function field.
 It turns out that using algebraic geometry one can write a faster
 algorithm. The method we will give is based on Puiseux expansions.
 One cas see this as a variant on the Coates' algorithm as it is
 described in [Davenport, 1981]. Some difficulties in computing with
 Puiseux expansions can be avoided using a sharp bound for the number
 of terms required which will be given in Section 3. In Section 5 we
 derive which denominator is needed in the integral basis. Using this
 result 'intermediate expression swell' can be avoided.
 The Puiseux expansions generally introduce algebraic extensions. These
 extensions will not appear in the resulting integral basis."
 }

```
    - axiom.bib -
```

@misc{Hoei08,
author = "{van Hoeij}, Mark and Novocin, Andrew",
title = "A Reduction Algorithm for Algebraic Function Fields",
year = "2008",
month = "April",
url = "http://andy.novocin.com/pro/algext.pdf",
paper = "Hoei08.pdf",
abstract = "
Computer algebra systesm often produce large expressions involving
complicated algebraic numbers. In this paper we study variations of
the {\tt polred} algorithm that can often be used to find better
representations for algebraic numbers. The main new algorithm

```
```

 presented here is an algorithm that treats the same problem for the
 function field case."
 }
-
- ignore -
\bibitem[Vasconcelos 99]{Vas99} Vasconcelos, Wolmer
title = "Computational Methods in Commutative Algebra and Algebraic Geometry",
Springer, Algorithms and Computation in Mathematics, Vol 2 1999
ISBN 3-540-21311-2
keywords = "axiomref",

```

\section*{W}
- ignore -
\bibitem[Wang 89]\{Wan89\} Wang, D.
title = "A program for computing the Liapunov functions and Liapunov constants in Scratchpad II", SIGSAM Bulletin (ACM Special Interest Group
on Symbolic and Algebraic Manipulation), 23(4) pp25-31, Oct. 1989, CODEN SIGSBZ ISSN 0163-5824
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Wang 91]\{Wan91\} Wang, Dongming
title = "Mechanical manipulation for a class of differential systems", Journal of Symbolic Computation, 12(2) pp233-254 Aug. 1991
CODEN JSYCEH ISSN 0747-7171
keywords = "axiomref",
- ignore -
\bibitem[Wang 92]\{Wan92\} Wang, Paul S. (ed)
International System Symposium on Symbolic and Algebraic Computation 92 ACM Press, New York, NY 10036, USA, 1992
ISBN 0-89791-489-9 (soft cover), 0-89791-490-2 (hard cover), LCCN QA76.95.I59 1992
keywords = "axiomref",
- ignore -
```

\bibitem[Watanabe 90] {WN90} Watanabe, Shunro; Nagata, Morio; (ed)
ISSAC '90 Proceedings of the
International Symposium on Symbolic and Algebraic Computation ACM Press,
New York, NY, 10036, USA. 1990 ISBN 0-89791-401-5 LCCN QA76.95.I57 1990
keywords = "axiomref",

```
— ignore -
\bibitem[Watt 85]\{Wat85\} Watt, Stephen
    title = "Bounded Parallelism in Computer Algebra",
PhD Thesis, University of Waterloo
    url = "http://www.csd.uwo.ca/~watt/pub/reprints/1985-smw-phd.pdf",
    keywords = "axiomref",
- ignore -
\bibitem[Watt 86]\{Wat86\} Watt, S.M.; Della Dora, J. title = "Algebra Snapshot: Linear Ordinary Differential Operators", Scratchpad II Newsletter: Vol 1 Num 2 (Jan 1986) url = "http://www.csd.uwo.ca/~watt/pub/reprints/1986-snews-lodo.pdf", keywords = "axiomref",
- ignore -
```

\bibitem[Watt 87]{Wat87} Watt, Stephen
title = "Domains and Subdomains in Scratchpad II",
in [Wit87], pp3-5
keywords = "axiomref",

```
    - ignore -
\bibitem[Watt 87a]\{WB87\} Watt, Stephen M.; Burge, William H.
    title = "Mapping as First Class Objects",
in [Wit87], pp13-17
    keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Watt 89]\{Wat89\} Watt, S. M.
title = "A fixed point method for power series computation", In Gianni [Gia89], pp206-217 ISBN 3-540-51084-2 LCCN QA76.95.I57 1988 Conference held jointly with AAECC-6
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Watt 90]\{WJST90\} Watt, S.M.; Jenks, R.D.; Sutor, R.S.; Trager, B.M.
title = "The Scratchpad II type system: Domains and subdomains",
in A.M. Miola, editor Computing Tools
for Scientific Problem Solving, Academic Press, New York, 1990
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Watt 91]\{Wat91\} Watt, Stephen M. (ed)
Proceedings of the 1991 International Symposium on
Symbolic and Algebraic Computation, ISSAC'91, July 15-17, 1991, Bonn, Germany,
```

ACM Press, New York, NY 10036, USA, 1991 ISBN 0-89791-437-6
LCCN QA76.95.I59 1991
keywords = "axiomref",

```
    - ignore -
\bibitem[Watt 94a]\{Wat94a\} Watt, Stephen M.; Dooley, S.S.; Morrison, S.C.;
Steinback, J.M.; Sutor, R.S.
    title = "A\\# User's Guide",
Version 1.0.0 O(\$\epsilon\{\}^1\$) June 8, 1994
    keywords = "axiomref",
    - ignore -
```

\bibitem[Watt 94b]{Wat94} Watt, Stephen M.; Broadbery, Peter A.;
Dooley, Samuel S.; Iglio, Pietro
title = "A First Report on the A\# Compiler (including benchmarks)",
IBM Research Report RC19529 (85075) May 12, 1994
paper = "Wat94.pdf",
keywords = "axiomref",

```
    — ignore -
\bibitem[Watt 94c] \{Wat94c\} Watt, Stephen M.
    title = "A\\# Language Reference Version 0.35",
IBM Research Division Technical Report RC19530 May 1994
    keywords = "axiomref",
            - ignore -
\bibitem[Watt 95]\{Wat95\} Watt, S.M.; Broadbery, P.A.; Dooley, S.S.; Iglio, P.
Steinbach, J.M.; Morrison, S.C.; Sutor, R.S.
    title \(=\) "AXIOM Library Compiler Users Guide",
```

The Numerical Algorithms Group (NAG) Ltd, 1994
keywords = "axiomref",

```
\(\qquad\)
```

 - ignore -
 \bibitem[Watt 01]{Wat01} Watt, Stephen M.; Broadbery, Peter A.; Iglio, Pietro;
Morrison, Scott C.; Steinbach, Jonathan M.
title = "FOAM: A First Order Abstract Machine Version 0.35",
IBM T. J. Watson Research Center (2001)
paper = "Wat01.pdf",
keywords = "axiomref",
_ ignore -
\bibitem[Weber 92]{Webe92} Weber, Andreas
title = "Type Systems for Computer Algebra",
url = "http://cg.cs.uni-bonn.de/personal-pages/weber/publications/pdf/WeberA/Weber92a.pdf",
paper = "Webe92.pdf",
keywords = "axiomref",
abstract = "
An important feature of modern computer algebra systems is the support
of a rich type system with the possibility of type inference. Basic
features of such a type system are polymorphism and coercion between
types. Recently the use of order-sorted rewrite systems was proposed
as a general framework. We will give a quite simple example of a
family of types arising in computer algebra whose coercion relations
cannot be captured by a finite set of first-order rewrite rules."

```
                            - ignore -
```

\bibitem[Weber 92b]{Webe92b} Weber, Andreas
title = "Structuring the Type System of a Computer Algebra System",
url = "http://cg.cs.uni-bonn.de/personal-pages/weber/publications/pdf/WeberA/Weber92a.pdf",
paper = "Webe92b.pdf",
keywords = "axiomref",
abstract = "
Most existing computer algebra systems are pure symbol manipulating

```
systems without language support for the occuring types. This is mainly due to the fact taht the occurring types are much more complicated than in traditional programming languages. In the last decade the study of type systems has become an active area of research. We will give a proposal for a type system showing that several problems for a type system of a symbolic computation system can be solved by using results of this research. We will also provide a variety of examples which will show some of the problems that remain and that will require further research."
- ignore -
\bibitem[Weber 93b] \{Webe93b\} Weber, Andreas
title = "Type Systems for Computer Algebra",
url = "http://cg.cs.uni-bonn.de/personal-pages/weber/publications/pdf/WeberA/Weber93b.pdf",
paper = "Webe93b.pdf",
keywords = "axiomref",
abstract = "
We study type systems for computer algebra systems, which frequently correspond to the ' 'pragmatically developed'' typing constructs used in AXIOM. A central concept is that of \(\{\backslash\) sl type classes\} which correspond to AXIOM categories. We will show that types can be syntactically described as terms of a regular order-sorted signature if no type parameters are allowed. Using results obtained for the functional programming language Haskell we will show that the problem of \(\{\backslash\) sl type inference\} is decidable. This result still holds if higher-order functions are present and \{\sl parametric polymorphism\} is used. These additional typing constructs are useful for further extensions of existing computer algebra systems: These typing concepts can be used to implement category theoretic constructs and there are many well known constructive interactions between category theory and algebra."

\section*{- ignore -}
\bibitem[Weber 94] \{Web94\} Weber, Andreas
title \(=\) "Algorithms for Type Inference with Coercions",
ISSAC 94 ACM 0-89791-638-7/94/0007
paper \(=\) "Web94.pdf",
keywords = "axiomref",
abstract = "
This paper presents algorithms that perform a type inference for a
```

type system occurring in the context of computer algebra. The type
system permits various classes of coercions between types and the
algorithms are complete for the precisely defined system, which can be
seen as a formal description of an important subset of the type system
supported by the computer algebra program Axiom.
Previously only algorithms for much more restricted cases of coercions
have been described or the frameworks used have been so general that
the corresponding type inference problems were known to be
undecidable."

```
— ignore -
\bibitem[Weber 95] \{Webe95\} Weber, A.
title = "On coherence in computer algebra", url = "http://cg.cs.uni-bonn.de/personal-pages/weber/publications/pdf/WeberA/Weber94e.pdf", paper \(=\) "Webe95.pdf", keywords = "axiomref", abstract = "

Modern computer algebra systems (e.g. AXIOM) support a rich type system including parameterized data types and the possibility of implicit coercions between types. In such a type system it will be frequently the case that there are different ways of building coercions between types. An important requirement is that all coercions between two types coincide, a property which is called \{\sl coherence\}. We will prove a coherence theorem for a formal type system having several possibilities of coercions covering many important examples. Moreover, we will give some informal reasoning why the formally defined restrictions can be satisfied by an actual system."

\section*{- ignore -}
\bibitem[Weber 96]\{Webe96\} Weber, Andreas title = "Computing Radical Expressions for Roots of Unity", url = "http://cg.cs.uni-bonn.de/personal-pages/weber/publications/pdf/WeberA/Weber96a.pdf", paper = "Webe96.pdf",
keywords = "axiomref", abstract = "

We present an improvement of an algorithm given by Gauss to compute a radical expression for a \(\$ p \$-\) th root of unity. The time complexity of the algorithm is \(\$ 0\left(\mathrm{p}^{\wedge} 3 \mathrm{~m} \wedge 6\right.\) log p\()\), where \(\$ \mathrm{~m}\) \$ is the largest prime factor of \(\$ \mathrm{p}-1 \$ . "\)
- ignore -
```

\bibitem[Weber 99]{Webe99} Weber, Andreas
title = "Solving Cyclotomic Polynomials by Radical Expressions",
url = "http://cg.cs.uni-bonn.de/personal-pages/weber/publications/pdf/WeberA/WeberKeckeisen99a
paper = "Webe99.pdf",
keywords = "axiomref",
abstract = "
We describe a Maple package that allows the solution of cyclotomic
polynomials by radical expressions. We provide a function that is an
extension of the Maple {\sl solve} command. The major algorithmic
ingredient of the package is an improvement of a method due to Gauss
which gives radical expressions for roots of unity. We will give a
summary for computations up to degree 100, which could be done within
a few hours of cpu time on a standard workstation."

```
            - ignore -
\bibitem[Wei-Jiang 12]\{WJ12\} Wei-Jiang
    title = "Top free algebra System",
    url = "http://wei-jiang.com/it/software/top-free-algebra-system-bye-mathematica-bye-maple",
    keywords = "axiomref",
                    - axiom.bib -
@misc\{West99a,
    author = "Wester, Michael J.",
    title = "A Critique of the Mathematical Abilities of CA Systems",
    year = "1999",
    url = "http://math.unm.edu/~wester/cas/book/Wester.pdf",
    url2 = "http://math.unm.edu/~wester/cas_review.html",
    paper = "West99a.pdf",
    abstract =
        "Computer algebra systems (CASs) have become an essential computational
        tool in the last decade. General purpose CASs, which are designed to
        solve a wide variety of problems, have gained special prominence. In
```

 this chapter, the capabilities of seven major general purpose CASs
 (Axiom, Derive, Macsyma, Maple, Mathmatica, MuPAD and Reduce) are
 reviewed on 542 short problems covering a broad range of (primarily)
 symbolic mathematics."
 }

```
\(\qquad\)
```

- ignore -
\bibitem[Wester 99]\{Wes99\} Wester, Michael J. title = "Computer Algebra Systems",
John Wiley and Sons 1999 ISBN 0-471-98353-5 keywords = "axiomref",
- ignore -

```
```

\bibitem[Wexelblat 87]{Wex87} Wexelblat, Richard L. (ed)

```
\bibitem[Wexelblat 87]{Wex87} Wexelblat, Richard L. (ed)
Proceedings of the SIGPLAN '87 Symposium on
Proceedings of the SIGPLAN '87 Symposium on
Interpreter and Interpretive Techniques, St. Paul, Minnesota, June 24-26, 1987
Interpreter and Interpretive Techniques, St. Paul, Minnesota, June 24-26, 1987
ACM Press, New York, NY 10036, USA, 1987 ISBN 0-89791-235-7
ACM Press, New York, NY 10036, USA, 1987 ISBN 0-89791-235-7
LCCN QA76.7.S54 v22:7 SIGPLAN Notices, vol 22, no 7 (July 1987)
LCCN QA76.7.S54 v22:7 SIGPLAN Notices, vol 22, no 7 (July 1987)
    keywords = "axiomref",
```

 keywords = "axiomref",
    ```
\(\qquad\)
```

- ignore -
\bibitem[Wityak 87]\{Wit87\} Wityak, Sandra title = "Scratchpad II Newsletter",
Volume 2, Number 1, Nov 1987 keywords = "axiomref",

```
\(\qquad\)
```

- ignore -
\bibitem[WWW1] \{WWW1\}.

```
```

Software Preservation Group
url = "http://www.softwarepresentation.org/projects/LISP/common_lisp_family",
keywords = "axiomref",

```
\(\qquad\)

Y
- ignore -
\bibitem[Yap 00]\{Yap00\} Yap, Chee Keng
title = "Fundamental Problems of Algorithmic Algebra",
Oxford University Press (2000) ISBNO-19-512516-9
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Yapp 07]\{Yapp07\} Yapp, Clifford; Hebisch, Waldek; Kaminski, Kai title = "Literate Programming Tools Implemented in ANSI Common Lisp", url = "http://brlcad.org/~starseeker/cl-web-v0.8.lisp.pamphlet",
keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Yun 83]\{Yun83\} Yun, David Y.Y.
title = "Computer Algebra and Complex Analysis",
Computational Aspects of Complex Analysis pp379-393
D. Reidel Publishing Company H. Werner et. al. (eds.)
keywords = "axiomref",

Z
- ignore -
```

\bibitem[Zen92]{Zen92} Zenger, Ch.
title = "Gr{\"o}bnerbasen f{\"u}r Differentialformen und ihre Implementierung in AXIOM'",
Diplomarbeit, Universit{\"a}t Karlsruhe,
Karlsruhe, Germany, 1992
keywords = "axiomref",

```
    - ignore -
\bibitem[Zip92]\{Zip92\} Zippel, Richard
    title = "Algebraic Computation",
(unpublished) Cornell University Ithaca, NY Sept 1992
    keywords = "axiomref",
\(\qquad\)
- ignore -
\bibitem[Zwi92]\{Zwi92\} Zwillinger, Daniel
title \(=\) "Handbook of Integration",
Jones and Bartlett, 1992, ISBN 0-86720-293-9
keywords = "axiomref",

\subsection*{2.36 Axiom Citations of External Sources}

A
— axiom.bib -
```

@article{Abla98,
author = "Ablamowicz, Rafal",
title = "Spinor Representations of Clifford Algebras: A Symbolic Approach",
journal = "Computer Physics Communications",
volume = "115",
number = "2-3",
month = "December",
year = "1998",
pages = "510-535"

```
- axiom.bib -
```

@article{Abra06,
author = "Abramov, Sergey A.",
title = "{In Memory of Manuel Bronstein}",
journal = "Programming and Computer Software",
volume = "32",
number = "1",
pages = "56-58",
publisher = "Pleiades Publishing Inc",
year = "2006",
paper = "Abra06.pdf",
}

```
- ignore -
\bibitem[Abramowitz 64]\{AS64\} Abramowitz, Milton; Stegun, Irene A.
title = "Handbook of Mathematical Functions",
(1964) Dover Publications, NY ISBN 0-486-61272-4
- ignore -
\bibitem[Abramowitz 68]\{AS68\} Abramowitz M; Stegun I A
title = "Handbook of Mathematical Functions",
Dover Publications. (1968)
- axiom.bib -
@book\{Altm05,
author = "Altmann, Simon L.",
title \(=\) "Rotations, Quaternions, and Double Groups",
```

 publisher = "Dover Publications, Inc.",
 year = "2005",
 isbn = "0-486-44518-6"
 }

```
- ignore -
\bibitem[Ames 77]\{Ames77\} Ames W F
title = "Nonlinear Partial Differential Equations in Engineering", Academic Press (2nd Edition). (1977)
\(\qquad\)
- ignore -
\bibitem[Amos 86]\{Amos86\} Amos D E
title = "Algorithm 644: A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Ord ACM Trans. Math. Softw. 12 265--273. (1986)
- ignore -
\bibitem[Anderson 00]\{And00\} Anderson, Edward
title = "Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem", LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
- ignore -
\bibitem[Anthony 82] \{ACH82\} Anthony G T; Cox M G; Hayes J G
title = "DASL - Data Approximation Subroutine Library",
National Physical Laboratory. (1982)
- ignore -
```

\bibitem[Arnon 88]{Arno88} Arno, D.S.; Mignotte, M.
title = "On Mechanical Quantifier Elimination for Elementary Algebra and Geometry",
J. Symbolic Computation 5, 237-259 (1988)
url = "http://http://www.sciencedirect.com/science/article/pii/S0747717188800142/pdf?md5=62052
paper = "Arno88.pdf",
abstract = "
We give solutions to two problems of elementary algebra and geometry:
(1) find conditions on real numbers p, q, and r so that the
polynomial function $f(x)=x^4+px^2+qx+r$ is nonnegative for all real
x and (2) find conditions on real numbers a, b, and c so that
the ellipse $\frac{(x-e)^2}{q^2}+\frac{y^2}{b^2}-1=0$ lies inside the
unit circle $y^2+x^2-1=0$. Our solutions are obtained by following the
basic outline of the method of quantifier elimination by cylindrical
algebraic decomposition (Collins, 1975), but we have developed, and
have been considerably aided by, modified versions of certain of its
steps. We have found three equally simple but not obviously equivalent
solutions for the first problem, illustrating the difficulty of
obtaining unique ''simplest') solutions to quantifier elimination
problems of elementary algebra and geometry."
_ axiom.bib -
@article{Aubr99,
author = "Aubry, Phillippe and Lazard, Daniel and {Moreno Maza}, Marc",
title = "On the Theories of Triangular Sets",
year = "1999",
pages = "105-124",
journal = "Journal of Symbolic Computation",
volume = "28",
url = "http://www.csd.uwo.ca/~moreno/Publications/Aubry-Lazard-MorenoMaza-1999-JSC.pdf",
papers = "Aubr99.pdf",
abstract = "
Different notions of triangular sets are presented. The relationship
between these notions are studied. The main result is that four
different existing notions of {\sl good} triangular sets are
equivalent."
}

```
- ignore -
\bibitem[Aubry 96]\{Aub96\} Aubry, Philippe; Maza, Marc Moreno title = "Triangular Sets for Solving Polynomial Systems: a Comparison of Four Methods",
```

url = "http://www.lip6.fr/lip6/reports/1997/lip6.1997.009.ps.gz",
paper = "Aub96.ps",
abstract = "
Four methods for solving polynomial systems by means of triangular
sets are presented and implemented in a unified way. These methods are
those of Wu, Lazard, Kalkbrener, and Wang. They are compared on
various examples with emphasis on efficiency, conciseness and
legibility of the outputs."

```

\section*{B}
- ignore -
\bibitem[Bailey 66]\{Bai66\} Bailey P B
title = "Sturm-Liouville Eigenvalues via a Phase Function", SIAM J. Appl. Math . 14 242--249. (1966)
- ignore -
\bibitem[Baker 96]\{BGM96\} Baker, George A.; Graves-Morris, Peter title = "Pade Approximants",
Cambridge University Press, March 1996 ISBN 9870521450072
\(\qquad\)
- ignore -
\bibitem[Baker 10] \{Ba10\} Baker, Martin
title = "3D World Simulation",
url = "http://www.euclideanspace.com",
\(\qquad\)
— axiom.bib -
@misc\{Bake14,
```

 author = "Baker, Martin",
 title = "Axiom Architecture",
 year = "2014",
 keywords = "axiomref",
 url = "http://www.euclideanspace.com/prog/scratchpad/internals/ccode"
 }

```
- ignore -
\bibitem[Banks 68]\{BK68\} Banks D 0; Kurowski I
title = "Computation of Eigenvalues of Singular Sturm-Liouville Systems", Math. Computing. 22 304--310. (1968)
- ignore -
\bibitem[Bard 74] \{Bard74\} Bard Y
title \(=\) "Nonlinear Parameter Estimation",
Academic Press. 1974
\(\qquad\)
- ignore -
\bibitem[Barrodale 73]\{BR73\} Barrodale I; Roberts F D K
title = "An Improved Algorithm for Discrete \$ll_1\$ Linear Approximation", SIAM J. Numer. Anal. 10 839--848. (1973)
\(\qquad\)
- ignore -
\bibitem[Barrodale 74]\{BR74\} Barrodale I; Roberts F D K
title \(=\) "Solution of an Overdetermined System of Equations in the \$ll_1-norm\$.",
Comm. ACM. 17, 6 319--320. (1974)
- ignore -
\bibitem[Beauzamy 92] \{Bea92\} Beauzamy, Bernard
title = "Products of polynomials and a priori estimates for coefficients in polynomial decompositions: a
J. Symbolic Computation (1992) 13, 463-472
paper \(=\) "Bea92.pdf",
- ignore -
\bibitem[Beauzamy 93] \{Bea93\} Beauzamy, Bernard; Trevisan, Vilmar;
Wang, Paul S.
title = "Polynomial Factorization: Sharp Bounds, Efficient Algorithms",
J. Symbolic Computation (1993) 15, 393-413
paper = "Bea93.pdf",
— axiom.bib -
@article\{Bert95,
author = "Bertrand, Laurent",
title = "Computing a hyperelliptic integral using arithmetic in the
jacobian of the curve",
journal = "Applicable Algebra in Engineering, Communication and Computing",
volume = "6",
pages \(=\) "275-298",
year = "1995",
abstract = "
In this paper, we describe an efficient algorithm for computing an elementary antiderivative of an algebraic function defined on a hyperelliptic curve. Our algorithm combines B.M. Trager's integration algorithm and a technique for computing in the Jacobian of a hyperelliptic curve introduced by D.G. Cantor. Our method has been implemented and successfully compared to Trager's general algorithm." \}
- ignore -
\bibitem[Berzins 87]\{BBG87\} Berzins M; Brankin R W; Gladwell I.
title = "Design of the Stiff Integrators in the NAG Library", Technical Report. TR14/87 NAG. (1987)
\(\qquad\)
- ignore -
\bibitem[Berzins 90]\{Ber90\} Berzins M
title \(=\) "Developments in the NAG Library Software for Parabolic Equations", Scientific Software Systems. (ed J C Mason and M G Cox)
Chapman and Hall. 59--72. (1990)
\(\qquad\)
- ignore -
\bibitem[Birkhoff 62]\{BR62\} Birkhoff, G; Rota, G C
title = "Ordinary Differential Equations",
Ginn \\& Co., Boston and New York. (1962)
-
- ignore -
\bibitem[Boyd9 3a] \{Boyd93a\} Boyd, David W.
title = "Bounds for the Height of a Factor of a Polynomial in Terms of Bombieri's Norms: I. Th
J. Symbolic Computation (1993) 16, 115-130
paper = "Boyd93a.pdf",
\(\qquad\)
— ignore -
\bibitem[Boyd 93b] \{Boyd93b\} Boyd, David W.
title = "Bounds for the Height of a Factor of a Polynomial in Terms of Bombieri's Norms: II. I
J. Symbolic Computation (1993) 16, 131-145
paper = "Boyd93b.pdf",
\(\qquad\)
- ignore -
\bibitem[Braman 02a]\{BBM02a\} Braman, K.; Byers, R.; Mathias, R.
title = "The Multi-Shift QR Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 Performance", SIAM Journal of Matrix Analysis, volume 23, pages 929--947, 2002.
- ignore -
\bibitem[Braman 02b]\{BBM02b\} Braman, K.; Byers, R.; Mathias, R.
title = "The Multi-Shift QR Algorithm Part II: Aggressive Early Deflation", SIAM Journal of Matrix Analysis, volume 23, pages 948--973, 2002.
\(\qquad\)
- ignore -
\bibitem[Brent 75] \(\{\) Bre75\} Brent, R. P.
title = "Multiple-Precision Zero-Finding Methods and the Complexity of Elementary Function Evaluation, An J. F. Traub, Ed., Academic Press, New York 1975, 151-176
- ignore -
\bibitem[Brent 78]\{BK78\} Brent, R. P.; Kung, H. T.
title = "Fast Algorithms for Manipulating Formal Power Series", Journal of the Association for Computing Machinery, Vol. 25, No. 4, October 1978, 581-595
\(\qquad\)
_ ignore -
\bibitem[Brigham 73]\{Bri73\} Brigham E 0
title \(=\) "The Fast Fourier Transform", Prentice-Hall. (1973)
\bibitem[Brillhart 69]\{Bri69\} Brillhart, John title = "On the Euler and Bernoulli polynomials",
J. Reine Angew. Math., v. 234, (1969), pp. 45-64
\(\qquad\)
- ignore -
\bibitem[Brillhart 90]\{Bri90\} Brillhart, John title = "Note on Irreducibility Testing",
Mathematics of Computation, vol. 35, num. 35, Oct. 1980, 1379-1381
- ignore -
\bibitem[Bronstein 98a] \{Bro98a\} Bronstein, M.; Grabmeier, J.; Weispfenning, V. (eds) title = "Symbolic Rewriting Techniques",
Progress in Computer Science and Applied Logic 15, Birkhauser-Verlag, Basel ISBN 3-7643-5901-3 (1998)
- ignore -
```

\bibitem[Bronstein 88]{Bro88} Bronstein, Manual
title = "The Transcendental Risch Differential Equation",
J. Symbolic Computation (1990) 9, pp49-60 Feb }198
IBM Research Report RC13460 IBM Corp. Yorktown Heights, NY
url = "http://www.sciencedirect.com/science/article/pii/S0747717108800065",
paper = "Bro88.pdf",
abstract = "
We present a new rational algorithm for solving Risch differential
equations in towers of transcendental elementary extensions. In
contrast to a recent algorithm by Davenport we do not require a
progressive reduction of the denominators involved, but use weak
normality to obtain a formula for the denominator of a possible
solution. Implementation timings show this approach to be faster than
a Hermite-like reduction."

```
            - axiom.bib -
```

@techreport{Bron98,
author = "Bronstein, Manuel",
title = "The lazy hermite reduction",
type = "Rapport de Recherche",
number = "RR-3562",
year = "1998",
institution = "French Institute for Research in Computer Science",
paper = "Bron98.pdf",
abstract = "
The Hermite reduction is a symbolic integration technique that reduces
algebraic functions to integrands having only simple affine
poles. While it is very effective in the case of simple radical
extensions, its use in more general algebraic extensions requires the
precomputation of an integral basis, which makes the reduction
impractical for either multiple algebraic extensions or complicated
ground fields. In this paper, we show that the Hermite reduction can
be performed without {\sl a priori} computation of either a primitive
element or integral basis, computing the smallest order necessary for
a particular integrand along the way."
}

```
                    - axiom.bib -
@misc\{Bro98b,
    author = "Bronstein, Manuel",
    title = "Symbolic Integration Tutorial",
    series = "ISSAC'98",
    year = "1998",
    address = "INRIA Sophia Antipolis",
    url =
        "http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/issac98.pdf",
    paper \(=\) "Bro98b.pdf",
\}
- ignore -
\bibitem[Brown 99] \{Brow99\} Brown, Christopher W.
title \(=\) "Solution Formula Construction for Truth Invariant CADs",
Ph.D Thesis, Univ. Delaware (1999)
url = "http://www.usna.edu/Users/cs/wcbrown/research/thesis.ps.gz",
paper \(=\) "Brow99.pdf",
abstract = "

The CAD-based quantifier elimination algorithm takes a formula from the elementary theory of real closed fields as input, and constructs a CAD of the space of the formula's unquantified variables. This decomposition is truth invariant with respect to the input formula, meaning that the formula is either identically true or identically false in each cell of the decomposition. The method determines the truth of the input formula for each cell of the CAD, and then uses the CAD to construct a solution formula -- a quantifier free formula that is equivalent to the input formula. This final phase of the algorithm, the solution formula construction phase, is the focus of this thesis.

An optimal solution formula construction algorithm would be \{\sl complete\} -- i.e. applicable to any truth-invariant CAD, would be \{\sl efficient\}, and would produce \{\sl simple\} solution formulas. Prior to this thesis, no method was available with even two of these three properties. Several algorithms are presented, all addressing problems related to solution formula construction. In combination, these provide an efficient and complete method for constructing solution formulas that are simple in a variety of ways.

Algorithms presented in this thesis have been implemented using the SACLIB library, and integrated into QEPCAD, a SACLIB-based implementation of quantifier elimination by CAD. Example computations based on these implementations are discussed."

\section*{- ignore -}
\bibitem[Brown 02] \{Brow02\} Brown, Christopher W. title = "QEPCAD B -- A program for computing with semi-algebraic sets using CADs", paper = "Brow02.pdf", abstract = "

This report introduces QEPCAD B, a program for computing with real algebraic sets using cylindrical algebraic decomposition (CAD). QEPCAD \(B\) both extends and improves upon the QEPCAD system for quantifier elimination by partial cylindrical algebraic decomposition written by Hoon Hong in the early 1990s. This paper briefly discusses some of the improvements in the implementation of CAD and quantifier elimination vis CAD, and provides somewhat more detail on extensions to the system that go beyond quantifier elimination. The author is responsible for most of the extended features of QEPCAD B, but improvements to the basic CAD implementation and to the SACLIB library on which QEPCAD is based are the results of many people's work."
— axiom.bib -
```

@article{Burg74,
author = "William H. Burge",
title = "Stream Processing Functions",
year = "1974",
month = "January",
journal = "IBM Journal of Research and Development",
volume = "19",
issue = "1",
pages = "12-25",
papers = "Burg74.pdf",
abstract = "
One principle of structured programming is that a program should be
separated into meaningful independent subprograms, which are then
combined so that the relation of the parts to the whole can be clearly
established. This paper describes several alternative ways to compose
programs. The main method used is to permit the programmer to denote
by an expression the sequence of values taken on by a variable. The
sequence is represented by a function called a stream, which is a
functional analog of a coroutine. The conventional while and for loops
of structured programming may be composed by a technique of stream
processing (analogous to list processing), which results in more
structured programs than the orignals. This technique makes it
possible to structure a program in a natural way into its logically
separate parts, which can then be considered independently."
}

```
C
    - ignore -
\bibitem[Carlson 65]\{Car65\} Carlson, B C
    title \(=\) "On Computing Elliptic Integrals and Functions",
J Math Phys. 44 36--51. (1965)
    - ignore -
title = "Elliptic Integrals of the First Kind", SIAM J Math Anal. 8 231--242. (1977)
- ignore -
\bibitem[Carlson 77b]\{Car77b\} Carlson B C
title = "Special Functions of Applied Mathematics",
Academic Press. (1977)
\(\qquad\)
- ignore -
\bibitem[Carlson 78]\{Car78\} Carlson B C,
title = "Computing Elliptic Integrals by Duplication",
(Preprint) Department of Physics, Iowa State University. (1978)
\(\qquad\)
- ignore -
\bibitem[Carlson 88]\{Car88\} Carlson B C,
title = "A Table of Elliptic Integrals of the Third Kind",
Math. Comput. 51 267--280. (1988)
- ignore -
\bibitem[Cauchy 1829]\{Cau1829\} Augustin-Lux Cauchy
title = "Exercices de Math\’ematiques Quatri\‘eme Ann\’ee. De Bure Fr\‘eres", Paris 1829 (reprinted Oeuvres, II S \(\backslash\) 'erie, Tome IX, Gauthier-Villars, Paris, 1891).
- ignore -
```

\bibitem[Ch\'eze 07]{Chez07} Ch\'eze, Guillaume; Lecerf, Gr\'egoire
title = "Lifting and recombination techniques for absolute factorization",
Journal of Complexity, VOl 23 Issue 3 June 2007 pp 380-420
url = "http://www.sciencedirect.com/science/article/pii/S0885064X07000465",
paper = "Chez07.pdf",
abstract = "
In the vein of recent algorithmic advances in polynomial factorization
based on lifting and recombination techniques, we present new faster
algorithms for computing the absolute factorization of a bivariate
polynomial. The running time of our probabilistic algorithm is less
than quadratic in the dense size of the polynomial to be factored."

```
                    - ignore -
\bibitem[Childs 79]\{CSDDN79\} Childs B; Scott M; Daniel J W; Denman E;
Nelson P (eds)
    title = "Codes for Boundary-value Problems in Ordinary Differential Equations",
Lecture Notes in Computer Science. 76 (1979) Springer-Verlag
— ignore -
\bibitem[Clausen 89]\{Cla89\} Clausen, M.; Fortenbacher, A.
    title = "Efficient Solution of Linear Diophantine Equations",
JSC (1989) 8, 201-216
- ignore -
\bibitem[Clenshaw 55]\{Cle55\} Clenshaw C W,
    title \(=\) "A Note on the Summation of Chebyshev Series",
Math. Tables Aids Comput. 9 118--120. (1955)
\bibitem[Clenshaw 60]\{Cle60\} Clenshaw C W
title = "Curve Fitting with a Digital Computer", Comput. J. 2 170--173. (1960)
- ignore -
\bibitem[Clenshaw 62]\{Cle62\} Clenshaw C W
title \(=\) "Mathematical Tables. Chebyshev Series for Mathematical Functions", HMSO. (1962)
\(\qquad\)
- ignore -
\bibitem[Cline 84]\{CR84\} Cline A K; Renka R L,
title = "A Storage-efficient Method for Construction of a Thiessen Triangulation", Rocky Mountain J. Math. 14 119--139. (1984)
\(\qquad\)
— ignore -
\bibitem[Conway 87]\{CCNPW87\} Conway, J.; Curtis, R.; Norton, S.; Parker, R.; Wilson, R.
title = "Atlas of Finite Groups",
Oxford, Clarendon Press, 1987
\(\qquad\)
- ignore -
\bibitem[Conway 03] \{CSO3\} Conway, John H.; Smith, Derek, A.
title = "On Quaternions and Octonions",
A.K Peters, Natick, MA. (2003) ISBN 1-56881-134-9
\(\qquad\)
- ignore -
```

\bibitem[Cox 72]{Cox72} Cox M G
title = "The Numerical Evaluation of B-splines",
J. Inst. Math. Appl. 10 134--149. (1972)

```
    — ignore -
\bibitem[CH 73]\{CH73\} Cox M G; Hayes J G
    title = "Curve fitting: a guide and suite of algorithms for the non-specialist user",
Report NAC26. National Physical Laboratory. (1973)
    - ignore -
\bibitem[Cox 74a]\{Cox74a\} Cox M G
    title = "A Data-fitting Package for the Non-specialist User",
Software for Numerical Mathematics. (ed D J Evans) Academic Press. (1974)
    -
    - ignore -
\bibitem[Cox 74b] \{Cox74b\} Cox M G
    title = "Numerical methods for the interpolation and approximation of data by spline functions",
PhD Thesis. City University, London. (1975)
    - ignore -
\bibitem[Cox 75] \{Cox75\} Cox M G
    title = "An Algorithm for Spline Interpolation",
J. Inst. Math. Appl. 15 95--108. (1975)
- ignore -
```

\bibitem[Cox 77]{Cox77} Cox M G
title = "A Survey of Numerical Methods for Data and Function Approximation",
The State of the Art in Numerical Analysis. (ed D A H Jacobs)
Academic Press. 627--668. (1977)
keywords = "survey",
- ignore -
\bibitem[Cox 78]{Cox78} Cox M G
title = "The Numerical Evaluation of a Spline from its B-spline Representation",
J. Inst. Math. Appl. 21 135--143. (1978)

```
    - ignore -
\bibitem[Curtis 74] \{CPR74\} Curtis A R; Powell M J D; Reid J K
    title \(=\) "On the Estimation of Sparse Jacobian Matrices",
J. Inst. Maths Applics. 13 117--119. (1974)

\section*{D}
- ignore -
\bibitem[Dahlquist 74]\{DB74\} Dahlquist G; Bjork A
title = "Numerical Methods",
Prentice- Hall. (1974)
\(\qquad\)
- ignore -
\bibitem[Dalmas 98]\{DA98\} Dalmas, Stephane; Arsac, Olivier title = "The INRIA OpenMath Library",
Projet SAFIR, INRIA Sophia Antipolis Nov 25, 1998
```

 _ ignore -
 \bibitem[Dantzig 63]{Dan63} Dantzig G B
title = "Linear Programming and Extensions",
Princeton University Press. (1963)
_
_ ignore -
\bibitem[Davenport]{Dav} Davenport, James
title = "On Brillhart Irreducibility.",
To appear.
_ ignore -
\bibitem[Davenport 93]{Ref-Dav93} Davenport, J.H.
title = "Primality testing revisited",
Technical Report TR2/93
(ATR/6)(NP2556) Numerical Algorithms Group, Inc., Downer's Grove, IL, USA
and Oxford, UK, August 1993
url = "http://www.nag.co.uk/doc/TechRep/axiomtr.html",
- ignore -
\bibitem[Davis 67]{DR67} Davis P J; Rabinowitz P
title = "Numerical Integration",
Blaisdell Publishing Company. 33--52. (1967)

```
\(\qquad\)
```

- ignore -
\bibitem[Davis 75] DR 75 \} Davis P J; Rabinowitz P

```
title = "Methods of Numerical Integration", Academic Press. (1975)
\(\qquad\)
- ignore -
\bibitem[DeBoor 72] \{DeB72\} De Boor C
title = "On Calculating with B-splines", J. Approx. Theory. 6 50--62. (1972)
\(\qquad\)
- ignore -
\bibitem[De Doncker 78] \{DeD78\} De Doncker E,
title = "An Adaptive Extrapolation Algorithm for Automatic Integration", Signum Newsletter. 13 (2) 12--18. (1978)
- ignore -
\bibitem[Demmel 89]\{Dem89\} Demmel J W
title \(=\) "On Floating-point Errors in Cholesky",
LAPACK Working Note No. 14. University of Tennessee, Knoxville. 1989
- ignore -
\bibitem[Dennis 77]\{DM77\} Dennis J E Jr; More J J
title = "Quasi-Newton Methods, Motivation and Theory",
SIAM Review. 19 46--89. 1977
- ignore -
```

\bibitem[Dennis 81]{DS81} Dennis J E Jr; Schnabel R B
title = "A New Derivation of Symmetric Positive-Definite Secant Updates",
Nonlinear Programming 4. (ed O L Mangasarian, R R Meyer and S M. Robinson)

```
Academic Press. 167--199. (1981)
    - ignore -
\bibitem[Dennis 83]\{DS83\} Dennis J E Jr; Schnabel R B
    title = "Numerical Methods for Unconstrained Optimixation and Nonlinear Equations",
Prentice-Hall.(1983)
\(\qquad\)
- ignore -
\bibitem[Dierckx 75]\{Die75\} Dierckx P
title = "An Algorithm for Smoothing, Differentiating and Integration of Experimental Data Using Spline Fu
J. Comput. Appl. Math. 1 165--184. (1975)
\(\qquad\)
- ignore -
\bibitem[Dierckx 81]\{Die81\} Dierckx P
title \(=\) "An Improved Algorithm for Curve Fitting with Spline Functions", Report TW54. Dept. of Computer Science, Katholieke Universiteit Leuven. 1981
\(\qquad\)
- ignore -
\bibitem[Dierckx 82]\{Die82\} Dierckx P
title \(=\) "A Fast Algorithm for Smoothing Data on a Rectangular Grid while using Spline Functions", SIAM J. Numer. Anal. 19 1286--1304. (1982)
- ignore -
```

\bibitem[Dongarra 79]{DMBS79} Dongarra J J; Moler C B; Bunch J R;
Stewart G W
title = "LINPACK Users' Guide",
SIAM, Philadelphia. (1979)

```
    - ignore -
\bibitem[Dongarra 85]\{DCHH85\} Dongarra J J; Du Croz J J; Hammarling S;
Hanson R J
    title = "A Proposal for an Extended set of Fortran Basic Linear Algebra Subprograms",
SIGNUM Newsletter. 20 (1) 2--18. (1985)
- ignore -
\bibitem[Dongarra 88]\{REF-DON88\} Dongarra, Jack J.; Du Croz, Jeremy; Hammarling, Sven; Hanson, Richard J.
title \(=\) "An Extended Set of FORTRAN Basic Linear Algebra Subroutines", ACM Transactions on Mathematical Software, Vol 14, No 1, March 1988, pp 1-17
- ignore -
\bibitem[Dongarra 88a]\{REF-DON88a\} Dongarra, Jack J.; Du Croz, Jeremy;
Hammarling, Sven; Hanson, Richard J.
title = "ALGORITHM 656: An Extended Set of Basic Linear Algebra Subprograms: Model Implementat ACM Transactions on Mathematical Software, Vol 14, No 1, March 1988, pp 18-32
- ignore -
\bibitem[Dongarra 90]\{REF-DON90\} Dongarra, Jack J.; Du Croz, Jeremy; Hammarling, Sven; Duff, Iain S.
title \(=\) "A Set of Level 3 Basic Linear Algebra Subprograms",

ACM Transactions on Mathematical Software, Vol 16, No 1, March 1990, pp 1-17
- ignore -
\bibitem[Dongarra 90a]\{REF-DON90a\} Dongarra, Jack J.; Du Croz, Jeremy; Hammarling, Sven; Duff, Iain S.
title = "ALGORITHM 679: A Set of Level 3 Basic Linear Algebra Subprograms: Model Implementation and Test ACM Transactions on Mathematical Software, Vol 16, No 1, March 1990, pp 18-28
- ignore -
\bibitem[Ducos 00]\{Duc00\} Ducos, Lionel
title \(=\) "Optimizations of the subresultant algorithm", Journal of Pure and Applied Algebra V145 No 2 Jan 2000 pp149-163
\(\qquad\)
- ignore -
\bibitem[Duff 77]\{Duff77\} Duff I S,
title = "MA28 -- a set of Fortran subroutines for sparse unsymmetric linear equations", A.E.R.E. Report R.8730. HMSO. (1977)
- ignore -
\bibitem[Duval 96a] \{Duva96a\} Duval, D.; Gonz\’alez-Vega, L.
title = "Dynamic Evaluation and Real Closure",
Mathematics and Computers in Simulation 42 pp 551-560 (1996)
paper = "Duva96a.pdf",
abstract = "
The aim of this paper is to present how the dynamic evaluation method can be used to deal with the real closure of an ordered field. Two kinds of questions, or tests, may be asked in an ordered field:
equality tests \(\$(\mathrm{a}=\mathrm{b}\) ?) \$ and sign tests \(\$(\mathrm{a}>\mathrm{b} ?)\). Equality tests are handled through splittings, exactly as in the algebraic closure of a field. Sign tests are handled throug a structure called ''Tarski data type',."
- ignore -
\bibitem[Duval 96]\{Duva96\} Duval, D.; Reynaud, J.C.
title \(=\) "Sketches and Computations over Fields",
Mathematics and Computers in Simulation 42 pp 363-373 (1996)
paper = "Duva96.pdf",
abstract = "
The goal of this short paper is to describe one possible use of sketches in computer algebra. We show that sketches are a powerful tool for the description of mathematical structures and for the description of computations."
— ignore -
\bibitem[Duval 94a]\{Duva94a\} Duval, D.; Reynaud, J.C.
title = "Sketches and Computation (Part I): Basic Definitions and Static Evaluation",
Mathematical Structures in Computer Science, 4, p 185-238 Cambridge University Press (1994)
url = "http://journals.cambridge.org/abstract_S0960129500000438", paper = "Duva94a.pdf",
abstract = "
We define a categorical framework, based on the notion of \{\sl sketch\}, for specification and evaluation in the sense of algebraic specifications and algebraic programming. This framework goes far beyond our initial motivations, which was to specify computation with algebraic numbers. We begin by redefining sketches in order to deal explicitly with programs. Expressions and terms are carefully defined and studied, then \{\sl quasi-projective sketches\} are introduced. We describe \{\sl static evaluation\} in these sketches: we propose a rigorous basis for evaluation in the corresponding structures. These structures admit an initial model, but are not necessarily equational. In Part II (Duval and Reynaud 1994), we study a more general process, called \(\{\backslash\) sl dynamic evaluation\}, for structures that may have no initial model."
```

_ ignore -
\bibitem[Duval 94b]{Duva94b} Duval, D.; Reynaud, J.C.
title = "Sketches and Computation (Part II): Dynamic Evaluation and Applications",
Mathematical Structures in Computer Science, 4, p 239-271. Cambridge University Press (1994)
url = "http://journals.cambridge.org/abstract_S096012950000044X",
paper = "Duva94b.pdf",
abstract = "
In the first part of this paper (Duval and Reynaud 1994), we defined a
categorical framework, based on the notion of {\sl sketch}, for
specification and evaluation in the senses of algebraic specification
and algebraic programming. {\sl Static evaluation} in {\sl
quasi-projective sketches} was defined in Part I; in this paper, {\sl
dynamic evaluation} is introduced. It deals with more general
structures, which may have no initial model. Until now, this process
has not been used in algebraic specification systems, but computer
algebra systems are beginning to use it as a basic tool. Finally, we
give some applications of dynamic evaluation to computation in field
extensions."

```
            - ignore -
\bibitem[Duval 94c] \{Duva94c\} Duval, Dominique
    title = "Algebraic Numbers: An Example of Dynamic Evaluation",
J. Symbolic Computation 18, 429-445 (1994)
    url = "http://www.sciencedirect.com/science/article/pii/S0747717106000551",
    paper = "Duva94c.pdf",
    abstract = "
        Dynamic evaluation is presented through examples: computations
        involving algebraic numbers, automatic case discussion according to
        the characteristic of a field. Implementation questions are addressed
        too. Finally, branches are presented as ''dual', to binary functions,
        according to the approach of sketch theory."
    F
        - ignore -
        \bibitem[Fateman 08]\{Fat08\} Fateman, Richard
title = "Revisiting numeric/symbolic indefinite integration of rational functions, and extensi url = "http://www.eecs.berkeley.edu/~fateman/papers/integ.pdf", paper = "Fat08.pdf",
abstract = "

We know we can solve this problem: Given any rational function \(\$ f(x)=p(x) / q(x) \$\), where \(\$ p \$\) and \(\$ q \$\) are univariate polynomials over the rationals, compute its \{\sl indefinite\} integral, using if necessary, algebraic numbers. But in many circumstances an approximate result is more likely to be of use. Furthermore, it is plausible that it would be more useful to solve the problem to allow definite integration, or introduce additional parameters so that we can solve multiple definite integrations. How can a computer algebra system best answer the more useful questions? Finally, what if the integrand is not a ratio of polynomials, but something more challenging?"
- axiom.bib -
```

@misc{Flet01,
author = "Fletcher, John P.",
title = "Symbolic processing of Clifford Numbers in C++",
year = "2001",
journal = "Paper 25, AGACSE 2001."
}

```
                    - axiom.bib -
@misc\{Flet09,
    author = "Fletcher, John P.",
    title = "Clifford Numbers and their inverses calculated using the matrix
                representation",
    publisher = "Chemical Engineering and Applied Chemistry, School of
        Engineering and Applied Science, Aston University, Aston Triangle,
        Birmingham B4 7 ET, U. K.",
    url =
        "http://www.ceac.aston.ac.uk/research/staff/jpf/papers/paper24/index.php"
\}
- ignore -
```

\bibitem[Fletcher 81]{Fle81} Fletcher R
title = "Practical Methods of Optimization",
Vol 2. Constrained Optimization. Wiley. (1981)

```
— axiom.bib -
@article\{Floy63,
    author = "Floyd, R. W.",
    title = "Semantic Analysis and Operator Precedence",
    journal = "JACM",
    volume = "10",
    number = "3",
    pages = "316-333",
    year = "1963"
\}
    - ignore -
\bibitem[Forsythe 57]\{For57\} Forsythe G E,
    title \(=\) "Generation and use of orthogonal polynomials for data fitting with a digital computer",
J. Soc. Indust. Appl. Math. 5 74--88. (1957)
- ignore -
\bibitem[Fortenbacher 90]\{REF-For90\} Fortenbacher, A.
''Efficient type inference and coercion in computer algebra',
Design and Implementation of Symbolic Computation Systems (DISCO 90)
A. Miola, (ed) vol 429 of Lecture Notes in Computer Science
Springer-Verlag, pp56-60
    abstract = "
        Computer algebra systems of the new generation, like Scratchpad, are
        characterized by a very rich type concept, which models the
        relationship between mathematical domains of computation. To use these
        systems interactively, however, the user should be freed of type
        information. A type inference mechanism determines the appropriate
        function to call. All known models which allow to define a semantics
        for type inference cannot express the rich 'mathematical', type
structure, so presently type inference is done heuristically. The following paper defines a semantics for a subproblem thereof, namely coercion, which is based on rewrite rules. From this definition, and efficient coercion algorith for Scratchpad is constructed using graph techniques."
- ignore -
\bibitem[Fox 68]\{Fox68\} Fox L.; Parker I B.
title = "Chebyshev Polynomials in Numerical Analysis", Oxford University Press. (1968)
\(\qquad\)
- ignore -
\bibitem[Franke 80]\{FN80\} Franke R.; Nielson G
title \(=\) "Smooth Interpolation of Large Sets of Scattered Data", Internat. J. Num. Methods Engrg. 15 1691--1704. (1980)
\(\qquad\)
- ignore -
\bibitem[Fritsch 82]\{Fri82\} Fritsch F N
title = "PCHIP Final Specifications",
Report UCID-30194. Lawrence Livermore National Laboratory. (1982)
- ignore -
\bibitem[Fritsch 84]\{FB84\} Fritsch F N.; Butland J.
title \(=\) "A Method for Constructing Local Monotone Piecewise Cubic Interpolants", SIAM J. Sci. Statist. Comput. 5 300--304. (1984)
- ignore -
```

\bibitem[Froberg 65]{Fro65} Froberg C E.
title = "Introduction to Numerical Analysis",
Addison-Wesley. 181--187. (1965)

```
G
- ignore -
\bibitem[Garcia 95]\{Ga95\} Garcia, A.; Stichtenoth, H.
title = "A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound", Invent. Math., vol. 121, 1995, pp. 211--222.
_ ignore -
\bibitem[Gathen 90a]\{Gat90a\} \{von zur Gathen\}, Joachim; Giesbrecht, Mark
' Constructing Normal Bases in Finite Fields',
J. Symbolic Computation pp 547-570 (1990)
paper \(=\) "Gat90a.pdf",
abstract = "
An efficient probabilistic algorithm to find a normal basis in a finite field is presented. It can, in fact, find an element of arbitrary prescribed additive order. It is based on a density estimate
for normal elements. A similar estimate yields a probabilistic
polynomial-time reduction from finding primitive normal elements to
finding primitive elements."
- ignore -
\bibitem[Gathen 90]\{Gat90\} von zur Gathen, Joachim
title = "Functional Decomposition Polynomials: the Tame Case",
Journal of Symbolic Computation (1990) 9, 281-299
- axiom.bib -
```

@book{Gath99,
author = {{von zur Gathen}, Joachim and Gerhard, J\"urgen},
title = "Modern Computer Algebra",
publisher = "Cambridge University Press",
year = "1999",
isbn = "0-521-64176-4"
}

```
- ignore -
\bibitem[Gautschi 79a]\{Gau79a\} Gautschi W.
title = "A Computational Procedure for Incomplete Gamma Functions", ACM Trans. Math. Softw. 5 466--481. (1979)
- ignore -
\bibitem[Gautschi 79b]\{Gau79b\} Gautschi W.
title = "Algorithm 542: Incomplete Gamma Functions",
ACM Trans. Math. Softw. 5 482--489. (1979)
\(\qquad\)
- ignore -
\bibitem[Gentlemen 69] \{Gen69\} Gentlemen W M
title = "An Error Analysis of Goertzel's (Watt's) Method for Computing Fourier Coefficients",
Comput. J. 12 160--165. (1969)
\(\qquad\)
- ignore -
\bibitem[Gentleman 73]\{Gen73\} Gentleman W M.
title = "Least-squares Computations by Givens Transformations without Square Roots", J. Inst. Math. Applic. 12 329--336. (1973)
- ignore -
\bibitem[Gentleman 74]\{Gen74\} Gentleman W M.
title = "Algorithm AS 75. Basic Procedures for Large Sparse or Weighted Linear Least-squares Problems", Appl. Statist. 23 448--454. (1974)
\(\qquad\)
- ignore -
\bibitem[Gentlemen 74a]\{GM74a\} Gentleman W. M.; Marovich S. B.
title = "More on algorithms that reveal properties of floating point arithmetic units", Comms. of the ACM, 17, 276-277. (1974)
- ignore -
\bibitem[Genz 80]\{GM80\} Genz A C.; Malik A A.
title = "An Adaptive Algorithm for Numerical Integration over an N-dimensional Rectangular Region", J. Comput. Appl. Math. 6 295--302. (1980)
\(\qquad\)
— ignore -
\bibitem[Gill 72] \{GM72\} Gill P E.; Miller G F.
title = "An Algorithm for the Integration of Unequally Spaced Data", Comput. J. 15 80--83. (1972)
\(\qquad\)
- ignore -
\bibitem[Gill 74b]\{GM74b\} Gill P E.; Murray W. (eds)
title = "Numerical Methods for Constrained Optimization",
Academic Press. (1974)
```

 _ ignore -
 \bibitem[Gill 76a]{GM76a} Gill P E.; Murray W.
title = "Minimization subject to bounds on the variables",
Report NAC 72. National Physical Laboratory. (1976)

```
\(\qquad\)
```

 _ ignore -
 \bibitem[Gill 76b]{GM76b} Gill P E.; Murray W.
title = "Algorithms for the Solution of the Nonlinear Least-squares Problem",
NAC 71 National Physical Laboratory. (1976)
-
- ignore -
\bibitem[Gill 78]{GM78} Gill P E.; Murray W.
title = "Algorithms for the Solution of the Nonlinear Least-squares Problem",
SIAM J. Numer. Anal. 15 977--992. (1978)

```
    - ignore -
\bibitem[Gill 79]\{GM79\} Gill P E.; Murray W;
    title = "Conjugate-gradient Methods for Large-scale Nonlinear Optimization",
Technical Report SOL 79-15. Department of Operations Research,
Stanford University. (1979)
    - ignore -
\bibitem[Gill 81]\{GMW81\} Gill P E.; Murray W.; Wright M H.
    title = "Practical Optimization",
Academic Press. 1981
- ignore -
\bibitem[Gill 82]\{GMW82\} Gill P E.; Murray W.; Saunders M A.; Wright M H.
title \(=\) "The design and implementation of a quadratic programming algorithm", Report SOL 82-7. Department of Operations Research, Stanford University. (1982)
- ignore -
\bibitem[Gill 84a]\{GMSW84a\} Gill P E.; Murray W.; Saunders M A.; Wright M H title \(=\) "User's Guide for SOL/QPSOL Version 3.2",
Report SOL 84-5. Department of Operations Research, Stanford University. 1984
- ignore -
\bibitem[Gill 84b]\{GMSW84b\} Gill P E.; Murray W.; Saunders M A.; Wright M H
title = "Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints", ACM Trans. Math. Softw. 10 282--298. 1984
\(\qquad\)
- ignore -
\bibitem[Gill 86a]\{GMSW86a\} Gill P E.; Hammarling S.; Murray W.;
Saunders M A.; Wright M H.
title = "User's Guide for LSSOL (Version 1.0)",
Report SOL 86-1. Department of Operations Research, Stanford University. 1986
\(\qquad\)
- ignore -
\bibitem[Gill 86b]\{GMSW86b\} Gill P E.; Murray W.; Saunders M A.; Wright M H.
title = "Some Theoretical Properties of an Augmented Lagrangian Merit Function", Report SOL 86-6R. Department of Operations Research, Stanford University. 1986
- ignore -
```

\bibitem[Gladwell 79]{Gla79} Gladwell I
title = "Initial Value Routines in the NAG Library",
ACM Trans Math Softw. 5 386--400. (1979)

```
\(\qquad\)
- ignore -
\bibitem[Gladwell 80]\{GS80\} Gladwell I.; Sayers D K
title = "Computational Techniques for Ordinary Differential Equations", Academic Press. 1980
\(\qquad\)
— ignore -
```

\bibitem[Gladwell 86]{Gla86} Gladwell I
title = "Vectorisation of one dimensional quadrature codes",
Techincal Report. TR7/86 NAG. (1986)

```
\(\qquad\)
— ignore -
\bibitem[Gladwell 87]\{Gla87\} Gladwell I
title = "The NAG Library Boundary Value Codes", Numerical Analysis Report. 134 Manchester University. (1987)
\(\qquad\)
— ignore -
\bibitem[Goedel 40]\{God40\} Goedel
title = "The consistency of the continuum hypothesis", Ann. Math. Studies, Princeton Univ. Press, 1940
- ignore -
\bibitem[Goldman 87]\{Gold87\} Goldman, L. title = "Integrals of multinomial systems of ordinary differential equations", J. of Pure and Applied Algebra, 45, 225-240 (1987) url = "http://www.sciencedirect.com/science/article/pii/0022404987900727/pdf?md5=5a0c70643eab514ccf47d80e paper = "Gold87.pdf",
\(\qquad\)
- ignore -
\bibitem[Gollan 90] \{GG90\} H. Gollan; J. Grabmeier
title = "Algorithms in Representation Theory and their Realization in the Computer Algebra System Scratch] Bayreuther Mathematische Schriften, Heft 33, 1990, 1-23
- ignore -
\bibitem[Golub 89]\{GL89\} Golub, Gene H.; Van Loan, Charles F. title \(=\) "Matrix Computations", Johns Hopkins University Press ISBN 0-8018-3772-3 (1989)
- ignore -
\bibitem[Golub 96]\{GL96\} Golub, Gene H.; Van Loan, Charles F.
title = "Matrix Computations",
Johns Hopkins University Press ISBN 978-0-8018-5414-9 (1996)
\(\qquad\)
- ignore -
\bibitem[Grabmeier] \{Grab\} Grabmeier, J.
title = "On Plesken's root finding algorithm",
in preparation
- ignore -
\bibitem[Grebmeier 87]\{GK87\} Grabmeier, J.; Kerber, A.;
title = "The Evaluation of Irreducible Polynomial Representations of the General Linear Groups Acta Appl. Math. 8 (1987), 271-291
\(\qquad\)
- ignore -
\bibitem[Grabmeier 92] \{REF-GS92\} Grabmeier, J.; Scheerhorn, A.
title = "Finite fields in Axiom",
AXIOM Technical Report TR7/92 (ATR/5) (NP2522),
Numerical Algorithms Group, Inc., Downer's
Grove, IL, USA and Oxford, UK, 1992
url = "http://www.nag.co.uk/doc/TechRep/axiomtr.html",
- ignore -
\bibitem[Granville 1911]\{Gran1911\} Granville, William Anthony title = "Elements of the Differential and Integral Calculus",
url = "http://djm.cc/library/Elements_Differential_Integral_Calculus_Granville_edited_2.pdf", paper = "Gran1911.pdf",
- ignore -
```

\bibitem[Gruntz 93]{Gru93} Gruntz, Dominik
title = "Limit computation in computer algebra",
url = "http://algo.inria.fr/seminars/sem92-93/gruntz.pdf",
paper = "Gru93.pdf",
abstract = "
The automatic computation of limits can be reduced to two main
sub-problems. The first one is asymptotic comparison where one must
decide automatically which one of two functions in a specified class
dominates the other one asymptotically. The second one is asymptotic
cancellation and is usually exemplified by

```
```

$$
e^x[exp(1/x+e^{-x})-exp(1/x)],\quad{}x \leftarrow \infty
$$

In this example, if the sum is expanded in powers of $1/x$, the
expansion always yields $O(x^{-k})$, and this is not enough to conclude.
In 1990, J.Shackell found an algorithm that solved both these problems for the case of \$exp-log\$ functions, i.e. functions build by recursive application of exponential, logarithm, algebraic extension and field operations to one variable and the rational numbers. D. Gruntz and G. Gonnet propose a slightly different algorithm for exp-log functions. Extensions to larger classes of functions are also discussed."

```

\section*{H}
\(\qquad\)
@article\{Hach95,
    author \(=\) "Hach\'e, G. and Le Brigand, D.",
    title = "Effective construction of algebraic geometry codes",
    journal = "IEEE Transaction on Information Theory"
    volume = "41",
    month = "November",
    year = "1995"
    pages = "1615--1628"
\}
- axiom.bib -
@article\{Hach95a,
author = "Hach\'e, G.",
title = "Computation in algebraic function fields for effective construction of algebraic-geometric codes",
journal = "Lecture Notes in Computer Science"
volume = "948",
year = "1995",
pages = "262--278"
\}
- axiom.bib -
```

@phdthesis{Hach96,
author = "Hach\`e, G.",
title = "Construction effective des codes g\'eom\'etriques",
school = "l'Universit\'e Pierre et Marie Curie (Paris 6)",
year = "1996",
month = "Septembre"
}

```
— ignore -
\bibitem[Hall 76]\{HW76\} Hall G.; Watt J M. (eds),
    title \(=\) "Modern Numerical Methods for Ordinary Differential Equations",
Clarendon Press. (1976)
    \(\longrightarrow\)
    - ignore -
\bibitem[Hamdy 04] \{Ham04\} Hamdy, S.
    title = "LiDIA A library for computational number theory",
Reference manual Edition 2.1.1 May 2004
    url = "http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA",
\(\qquad\)
- ignore -
\bibitem[Hammarling 85]\{Ham85\} Hammarling S.
    title = " The Singular Value Decomposition in Multivariate Statistics",
ACM Signum Newsletter. 20, 3 2--25. (1985)
    - ignore -
```

\bibitem[Hammersley 67]{HH67} Hammersley J M; Handscomb D C.
''Monte-Carlo Methods''
Methuen. (1967)

```
    -
    — axiom.bib -
@misc\{Hath1896,
    author = "Hathway, Arthur S.",
    title = "A Primer Of Quaternions",
    year = "1896"
\}
    — axiom.bib -
@book\{Haya05,
    author = "Hayashi, K. and Kangkook, J. and Lascu, O. and Pienaar, H. and
                            Schreitmueller, S. and Tarquinio, T. and Thompson, J.",
    title = "AIX 5L Practical Performance Tools and Tuning Guide",
    publisher = "IBM",
    year = "2005",
    url = "http://www.redbooks.ibm.com/redbooks/pdfs/sg246478.pdf",
    paper = "Haya05.pdf",
\}
    - ignore -
\bibitem[Hayes 70]\{Hay70\} Hayes J G.
    title = "Curve Fitting by Polynomials in One Variable",
Numerical Approximation to Functions and Data.
(ed J G Hayes) Athlone Press, London. (1970)
    - ignore -
```

\bibitem[Hayes 74]{Hay74} Hayes J G.
title = "Numerical Methods for Curve and Surface Fitting",
Bull Inst Math Appl. 10 144--152. (1974)

```
    - ignore -
\bibitem[Hayes 74a]\{HH74\} Hayes J G.; Halliday J,
    title = "The Least-squares Fitting of Cubic Spline Surfaces to General Data Sets",
J. Inst. Math. Appl. 14 89--103. (1974)
- ignore -
\bibitem[Henrici 56]\{Hen56\} Henrici, Peter
title = "Automatic Computations with Power Series",
Journal of the Association for Computing Machinery, Volume 3, No. 1, January 1956, 10-15
- ignore -
\bibitem[Higham 88]\{Hig88\} Higham, N.J.
title = "FORTRAN codes for estimating the one-norm of a real or complex matrix, with applicati ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
I
- ignore -
\bibitem[Higham 02]\{Hig02\} Higham, Nicholas J.
title = "Accuracy and stability of numerical algorithms", SIAM Philadelphia, PA ISBN 0-89871-521-0 (2002)
- ignore -
\bibitem[Hock 81]\{HS81\} Hock W.; Schittkowski K.
title \(=\) "Test Examples for Nonlinear Programming Codes", Lecture Notes in Economics and Mathematical Systems. 187 Springer-Verlag. 1981
\(\qquad\)
— ignore -
\bibitem[Householder 70]\{Hou70\} Householder A S.
title = "The Numerical Treatment of a Single Nonlinear Equation", McGraw-Hill. (1970)
\(\qquad\)
- axiom.bib -
@book\{Hous81,
author = "Householder, Alston S.",
title = "Principles of Numerical Analysis",
publisher = "Dover Publications, Mineola, NY",
year = "1981",
isbn \(=\) " \(0-486-45312-X "\)
\}
- ignore -
\bibitem[Huang 96]\{HI96\} Huang, M.D.; Ierardi, D.
title = "Efficient algorithms for Riemann-Roch problem and for addition in the jacobian of a curve", Proceedings 32nd Annual Symposium on Foundations of Computer Sciences. IEEE Comput. Soc. Press, pp. 678--687.

I
- ignore -
\bibitem[IBM] \{IBM\}.

SCRIPT Mathematical Formula Formatter User's Guide, SH20-6453, IBM Corporation, Publishing Systems Information Development, Dept. G68, P.O. Box 1900, Boulder, Colorado, USA 80301-9191.
- ignore -
\bibitem[Itoh 88]\{Itoh88\} Itoh, T.; , Tsujii, S.
title \(=\) "A fast algorithm for computing multiplicative inverses in \(\$ \mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)\) \$ using normal base
Inf. and Comp. 78, pp.171-177, 1988
paper \(=\) "Itoh88.pdf",
abstract = "
This paper proposes a fast algorithm for computing multiplicative inverses in \$GF ( \(\left.2^{\wedge} \mathrm{m}\right)\) \$ using normal bases. Normal bases have the following useful property: In the case that an element \(\$ x \$\) in \$GF ( \(\left.2^{\wedge} m\right) \$\) is represented by normal bases, \(\$ 2^{\wedge} k \$\) power operation of an element \(\$ \mathrm{x}\) \$ in \(\$ \mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)\) \$ can be carried out by \(\$ \mathrm{k} \$\) times cyclic shift of its vector representation. C.C. Wang et al. proposed an algorithm for computing multiplicative inverses using normal bases, which requires \(\$(m-2) \$\) multiplications in \(\$ G F\left(2^{\wedge} m\right) \$\) and \(\$(m-1) \$\) cyclic shifts. The fast algorithm proposed in this paper also uses normal bases, and computes multiplicative inverses iterating multiplications in \(\$ \mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)\). . It requires at most \(\$ 2[\log 2(\mathrm{~m}-1)] \$\) multiplications in \$GF ( \(\left.2^{\wedge} \mathrm{m}\right)\) \$ and \(\$(\mathrm{~m}-1) \$\) cyclic shifts, which are much less than those required in Wang's method. The same idea of the proposed fast algorithm is applicable to the general power operation in \(\$\) GF ( \(\left.2^{\wedge} m\right) \$\) and the computation of multiplicative inverses in \(\$ G F\left(q^{\wedge} m\right) \$\) \$(q=2^n)\$."
- ignore -
\bibitem[Iyanaga 77]\{Iya77\} Iyanaga, Shokichi; Iyanaga, Yukiyosi Kawada
title = "Encyclopedic Dictionary of Mathematics", 1977

J
- ignore -
```

\bibitem[Jacobson 68]{Jac68} Jacobson, N.
title = "Structure and Representations of Jordan Algebras",
AMS, Colloquium Publications Volume 39

```
    - ignore -
\bibitem[James 81]\{JK81\} James, Gordon; Kerber, Adalbert
    title \(=\) "The Representation Theory of the Symmetric Group",
Encyclopedia of Mathematics and its Applications Vol. 16
Addison-Wesley, 1981
    — ignore -
\bibitem[Jaswon 77]\{JS77\} Jaswon, M A.; Symm G T.
    title = "Integral Equation Methods in Potential Theory and Elastostatics",
Academic Press. (1977)
    — ignore -
\bibitem[Jeffrey 04]\{Je04\} Jeffrey, Alan
    title = "Handbook of Mathematical Formulas and Integrals",
Third Edition, Elsevier Academic Press ISBN 0-12-382256-4
    - ignore -
\bibitem[Jenning 66]\{Jen66\} Jennings A
    title = "A Compact Storage Scheme for the Solution of Symmetric Linear Simultaneous Equations",
Comput. J. 9 281--285. (1966)

\section*{K}
- ignore -
\bibitem[Kalkbrener 91]\{Kal91\} Kalkbrener, M.
title \(=\) "Three contributions to elimination theory", Ph. D. Thesis, University of Linz, Austria, 1991
- ignore -
\bibitem[Kalkbrener 98]\{Kal98\} Kalkbrener, M.
title = "Algorithmic properties of polynomial rings", Journal of Symbolic Computation 1998
- ignore -
\bibitem[Kantor 89]\{Kan89\} Kantor,I.L.; Solodovnikov, A.S.
title = "Hypercomplex Numbers",
Springer Verlag Heidelberg, 1989, ISBN 0-387-96980-2
\(\qquad\)
- ignore -
\bibitem[Kaufmann 00] \{KMJ00\} Kaufmann, Matt; Manolios, Panagiotis;
Moore J Strother
title = "Computer-Aided Reasoning: An Approach",
Springer, July 31. 2000 ISBN 0792377443
- ignore -
\bibitem[Knuth 71]\{Knu71\} Knuth, Donald
title = "The Art of Computer Programming",
2nd edition Vol. 2 (Seminumerical Algorithms) 1st edition, 2nd printing, Addison-Wesley 1971, p. 397-398
- ignore -
```

\bibitem[Knuth 84]{Knu84} Knuth, Donald
{\it The \TeX{}book}.
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc.,
1984. ISBN 0-201-13448-9

```
- axiom.bib -
@book\{Knut92,
    author = "Knuth, Donald E.",
    title = "Literate Programming",
    publisher = "Center for the Study of Language and Information, Stanford CA",
    year = "1992",
    isbn \(=\) "0-937073-81-4"
\}
- ignore -
\bibitem[Knu98]\{Knu98\} Donald Knuth
title = "The Art of Computer Programming",
Vol. 3 (Sorting and Searching)
Addison-Wesley 1998
— ignore -
\bibitem[Kobayashi 89]\{Koba89\} Kobayashi, H.; Moritsugu, S.; Hogan, R.W. title = "On Radical Zero-Dimensional Ideals",
J. Symbolic Computations 8, 545-552 (1989)
url = "http://www.sciencedirect.com/science/article/pii/S0747717189800604/pdf?md5=f06dc6269514c90dcae57f0
paper \(=\) "Koba88.pdf",
\(\qquad\)
- ignore -
\bibitem[Kolchin 73]\{Kol73\} Kolchin, E.R.
title = "Differential Algebra and Algebraic Groups", (Academic Press, 1973).
- ignore -
```

\bibitem[Koutschan 10]{Kou10} Koutschan, Christoph
title = "Axiom / FriCAS",
keywords = "axiomref",
url = "http://www.risc.jku.at/education/courses/ws2010/cas/axiom.pdf",

```
\(\qquad\)
- ignore -
\bibitem[Kozen 86]\{KL86\} Kozen, Dexter; Landau, Susan
title = "Polynomial Decomposition Algorithms",
Journal of Symbolic Computation (1989) 7, 445-456

\section*{L}
- axiom.bib -
```

@book{Lamp86,
author = "Lamport, Leslie",
title = "LaTeX: A Document Preparation System",
publisher = "Addison-Wesley Publishing Company, Reading, Massachusetts",
year = "1986",
isbn = "0-201-15790-X"
}

```
- ignore -
\bibitem[Lautrup 71]\{Lau71\} Lautrup B.
title = "An Adaptive Multi-dimensional Integration Procedure",
Proc. 2nd Coll. on Advanced Methods in Theoretical Physics, Marseille. (1971)
\(\qquad\)
- ignore -
\bibitem[Lawson 77] \{Law77\} Lawson C L.
title = "Software for C Surface Interpolation",
Mathematical Software III. (ed J R Rice) Academic Press. 161--194. (1977)
\(\qquad\)
- ignore -
\bibitem [Lawson 74] \{LH74\} Lawson C L.; Hanson R J.
title = "Solving Least-squares Problems",
Prentice-Hall. (1974)
— axiom.bib -
```

@article{Laws79,
author = "Lawson, C.L. and Hanson R.J. and Kincaid, D.R. and Krogh, F.T.",
title = "Algorithm 539: Basic linear algebra subprograms for FORTRAN usage",
journal = "ACM Transactions on Mathematical Software",
volume = "5",
number = "3",
month = "September",
year = "1979",
pages = "308-323"
}

```
- ignore -
```

\bibitem[Lawson 79]{LHKK79} Lawson C L; Hanson R J; Kincaid D R;
Krogh F T

```
title = "Basic Linear Algebra Subprograms for Fortran Usage", ACM Trans. Math. Softw. 5 308--325. (1979)
\(\qquad\)
- ignore -
\bibitem[Lazard 91]\{Laz91\} Lazard, D.
title = "A new method for solving algebraic systems of positive dimension", Discr. App. Math. 33:147-160,1991
- ignore -
\bibitem[Lazard92]\{Laz92\} Lazard, D.
title = "Solving Zero-dimensional Algebraic Systems", Journal of Symbolic Computation, 1992, 13, 117-131
- axiom.bib -
```

@article{Laza90,
author = "Lazard, Daniel and Rioboo, Renaud",
title = "Integration of rational functions: Rational computation of the
logarithmic part",
journal = "Journal of Symbolic Computation",
volume = "9",
number = "2",
year = "1990",
month = "February",
pages = "113-115",
keywords = "axiomref",
paper = "Laza90.pdf",
abstract = "
A new formula is given for the logarithmic part of the integral of a
rational function, one that strongly improves previous algorithms and
does not need any computation in an algebraic extension of the field
of constants, nor any factorisation since only polynomial arithmetic
and GCD computations are used. This formula was independently found
and implemented in SCRATCHPAD by B.M. Trager."
}

```
- axiom.bib -
```

@article{LeBr88,
author = "Le Brigand, D.; Risler, J.J.",
title = "Algorithme de Brill-Noether et codes de Goppa",
journal = "Bull. Soc. Math. France",
volume = "116",
year = "1988",
pages = "231--253"
}

```
- axiom.bib -
@book\{Lege11,
    author = "Legendre, George L. and Grazini, Stefano",
    title = "Pasta by Design",
    publisher = "Thames and Hudson",
    isbn = "978-0-500-51580-8",
    year = "2011"
\}
- ignore -
\bibitem[Lenstra 87]\{LS87\} Lenstra, H. W.; Schoof, R. J. title = "Primitivive Normal Bases for Finite Fields", Math. Comp. 48, 1987, pp. 217-231
— axiom.bib -
@misc\{Leop03, author = "Leopardi, Paul", title = "A quick introduction to Clifford Algebras", publisher = "School of Mathematics, University of New South Wales", year = "2003",
```

 paper = "Leop03.pdf",
 }

```
- ignore -
\bibitem[Lewis 77] \{Lew77\} Lewis J G,
    title = "Algorithms for sparse matrix eigenvalue problems",
Technical Report STAN-CS-77-595. Computer Science Department,
Stanford University. (1977)
- ignore -
\bibitem[Lidl 83]\{LN83\} Lidl, R.; Niederreiter, H.
title = "Finite Field, Encycoldia of Mathematics and Its Applications", Vol. 20, Cambridge Univ. Press, 1983 ISBN 0-521-30240-4
\(\qquad\)
- ignore -
\bibitem[Linger 79]\{LMW79\} Linger, Richard C.; Mills, Harlan D.;
Witt, Bernard I.
title = "Structured Programming: Theory and Practice", Addison-Wesley (March 1979) ISBN 0201144611
\(\qquad\)
- ignore -
\bibitem[Lipson 81]\{Lip81\} Lipson, D.
title = "Elements of Algebra and Algebraic Computing",
The Benjamin/Cummings Publishing Company, Inc.-Menlo Park, California, 1981.
- axiom.bib -
```

@misc{Loet09,
author = "Loetzsch, Martin and Bleys, Joris and Wellens, Pieter",
title = "Understanding the Dynamics of Complex Lisp Programs",
year = "2009",
url = "http://www.martin-loetzsch.de/papers/loetzsch09understanding.pdf",
paper = "Loet09.pdf",
}

```
    — axiom.bib -
@misc\{Loet00,
    author = "Loetzsch, M.",
    title = "GTFL - A graphical terminal for Lisp",
    year = "2000",
    url = "http://martin-loetzsch.de/gtfl"
\}
— axiom.bib -
```

@book{Losc60,
author = {L\"osch, Friedrich},
title = "Tables of Higher Functions",
publisher = "McGraw-Hill Book Company",
year = "1960"
}

```
    - ignore -
\bibitem[LTU10]\{LTU10\}.
    title = "Lambda the Ultimate",
    url = "http://lambda-the-ultimate.org/node/3663\#comment-62440",
        — axiom.bib -
```

@book{Luke69a,
author = "Luke, Yudell L.",
title = "The Special Functions and their Approximations",
volume = "1",
publisher = "Academic Press",
year = "1969",
booktitle = "Mathematics in Science and Engineering Volume 53-I"
}

```
- axiom.bib -
```

@book{Luke69b,
author = "Luke, Yudell L.",
title = "The Special Functions and their Approximations",
volume = "2",
publisher = "Academic Press",
year = "1969",
booktitle = "Mathematics in Science and Engineering Volume 53-I"
}

```
- ignore -
\bibitem[Lyness 83]\{Lyn83\} Lyness J N.
title \(=\) "When not to use an automatic quadrature routine", SIAM Review. 25 63--87. (1983)

M
- ignore -
\bibitem[Mac Lane 79]\{MB79\} Mac Lane, Saunders; Birkhoff, Garret title = "Algebra",
AMS Chelsea Publishing ISBN 0821816462
- ignore -
\bibitem[Malcolm 72]\{Mal72\} Malcolm M. A.
title = "Algorithms to reveal properties of floating-point arithmetic", Comms. of the ACM, 15, 949-951. (1972)
- ignore -
\bibitem[Malcolm 76]\{MS76\} Malcolm M A.; Simpson R B.
title = "Local Versus Global Strategies for Adaptive Quadrature", ACM Trans. Math. Softw. 1 129--146. (1976)
- ignore -
\bibitem[Marden 66] \{Mar66\} Marden M.
title \(=\) "Geometry of Polynomials",
Mathematical Surveys. 3 Am. Math. Soc., Providence, RI. (1966)
\(\qquad\)
— axiom.bib -
@misc\{Mars07,
author = "Marshak, U.",
title = "HT-AJAX - AJAX framework for Hunchentoot", year = "2007",
url = "http://common-lisp.net/project/ht-ajax/ht-ajax.html"
\}
- ignore -
\bibitem[Maza 95] \{MR95\} Maza, M. Moreno; Rioboo, R.
title = "Computations of gcd over algebraic towers of simple extensions", In proceedings of AAECC11 Paris, 1995.
- ignore -
\bibitem[Maza 97]\{Maz97\} Maza, M. Moreno
title = "Calculs de pgcd au-dessus des tours d'extensions simples et resolution des systemes These, Universite P.etM. Curie, Paris, 1997.
\(\qquad\)
- ignore -
\bibitem[Maza 98] \{Maz98\} Maza, M. Moreno
title = "A new algorithm for computing triangular decomposition of algebraic varieties", nag Tech. Rep. 4/98.
\(\longrightarrow\)
- ignore -
\bibitem[Mignotte 82] \{Mig82\} Mignotte, Maurice
title = "Some Useful Bounds",
Computing, Suppl. 4, 259-263 (1982), Springer-Verlag
-
- ignore -
\bibitem[McCarthy 83]\{McC83\} McCarthy G J.
title \(=\) "Investigation into the Multigrid Code MGD1", Report AERE-R 10889. Harwell. (1983)
\(\qquad\)
- ignore -
\bibitem[Mie97]\{Mie97\} Mielenz, Klaus D. title = "Computation of Fresnel Integrals",
J. Res. Natl. Inst. Stand. Technol. (NIST) V102 No3 May-June 1997 pp363-365
- ignore -
\bibitem[Mie00]\{Mie00\} Mielenz, Klaus D.
title \(=\) "Computation of Fresnel Integrals II",
J. Res. Natl. Inst. Stand. Technol. (NIST) V105 No4 July-Aug 2000 pp589-590
— axiom.bib -
@article\{Mill68,
author = "Millen, J. K.",
title = "CHARYBDIS: A LISP program to display mathematical expressions on typewriter-like devices",
year = "1968",
journal = "Interactive Systems for Experimental and Applied Mathematics", publisher = "M. Klerer and J. Reinfelds, eds., Academic Press, New York", pages = "79--90",
paper = "Mill68.pdf",
abstract = "
CHARYBDIS (from CHARacter-composed sYmBolic DISplay) is a LISP program to display mathematical expressions on typewriter-like devices such as line printers, teletypes, and scopes which display lines of characters, as well as typewriters."
\}
- ignore -
\bibitem[Minc 79]\{Min79\} Henryk Minc
title = "Evaluation of Permanents",
Proc. of the Edinburgh Math. Soc.(1979), 22/1 pp 27-32.
\(\qquad\)
- ignore -
\bibitem[More 74]\{MGH74\} More J J.; Garbow B S.; Hillstrom K E.
title = "User Guide for Minpack-1",
ANL-80-74 Argonne National Laboratory. (1974)
- ignore -
```

\bibitem[Mikhlin 67]{MS67} Mikhlin S G.; Smolitsky K L.
title = "Approximate Methods for the Solution of Differential and Integral Equations",
Elsevier. (1967)

```
\(\longrightarrow\)
- ignore -
\bibitem[Mitchell 80]\{MG80\} Mitchell A R.; Griffiths D F.
    title = "The Finite Difference Method in Partial Differential Equations",
Wiley. (1980)
- ignore -
\bibitem[Moler 73]\{MS73\} Moler C B.; Stewart G W.
    title = "An Algorithm for Generalized Matrix Eigenproblems",
SIAM J. Numer. Anal. 10 241--256. 1973
- axiom.bib -
```

@article{Muld97,
author = "Mulders, Thom",
title = "A Note on Subresultants and the Lazard/Rioboo/Trager Formula in
Rational Function Integration",
journal = "Journal of Symbolic Computation",
year = "1997",
volume = "24",
number = "1",
month = "July",
pages = "45-50",
paper = "Muld97.pdf",
abstract = "
An ambiguity in a formula of Lazard, Rioboo and Trager, connecting
subresultants and rational function integration, is indicated and

```
examples of incorrect interpretations are given."
\}
- ignore -
\bibitem[Munksgaard 80]\{Mun80\} Munksgaard N.
title = "Solving Sparse Symmetric Sets of Linear Equations by Pre-conditioned Conjugate Gradients", ACM Trans. Math. Softw. 6 206--219. (1980)
\(\qquad\)
- ignore -
\bibitem[Murray 72] \{Mur72\} Murray W, (ed)
title = "Numerical Methods for Unconstrained Optimization", Academic Press. (1972)
\(\qquad\)
- ignore -
\bibitem[Murtagh 83]\{MS83\} Murtagh B A.; Saunders M A
title = "MINOS 5.0 User's Guide",
Report SOL 83-20. Department of Operations Research, Stanford University 1983
\(\qquad\)
- ignore -
\bibitem[Musser 78] \{Mus78\} Musser, David R.
title \(=\) "On the Efficiency of a Polynomial Irreducibility Test", Journal of the ACM, Vol. 25, No. 2, April 1978, pp. 271-282
\(\qquad\)

N
- ignore -
```

\bibitem[Nijenhuis 78]{NW78} Nijenhuis and Wilf
title = "Combinatorical Algorithms",
Academic Press, New York 1978.
- ignore -
\bibitem[Nikolai 79]{Nik79} Nikolai P J.
title = "Algorithm 538: Eigenvectors and eigenvalues of real generalized symmetric matrices by
ACM Trans. Math. Softw. 5 118--125. (1979)

```

\section*{O}
— axiom.bib -
```

@misc{OCAM14,

```
    author = "unknown",
    title = "The OCAML website",
    url = "http://ocaml.org"
\}
- ignore -
\bibitem[Ollagnier 94]\{01la94\} Ollagnier, Jean Moulin
title = "Algorithms and methods in differential algebra", url = "http://www.lix.polytechnique.fr/~moulin/papiers/atelier.pdf", paper = "Olla94.pdf",
- ignore -
```

\bibitem[Olver 10]{NIST10} Olver, Frank W.; Lozier, Daniel W.;
Boisvert, Ronald F.; Clark, Charles W. (ed)
title = "NIST Handbook of Mathematical Functions",
(2010) Cambridge University Press ISBN 978-0-521-19225-5

```
— ignore -
\bibitem [OpenM] \{OpenM\}.
title = "OpenMath Technical Overview",
url = "http://www.openmath.org/overview/technical.html",
\(\qquad\)
- ignore -
\bibitem[Ortega 70]\{0R70\} Ortega J M.; Rheinboldt W C.
title = "Iterative Solution of Nonlinear Equations in Several Variables", Academic Press. (1970)
\(\qquad\)
- axiom.bib -
```

@misc{0str1845,
author = "Ostrogradsky. M.W.",
title = "De l'int\'{e}gration des fractions rationelles.",
journal = "Bulletin de la Classe Physico-Math\'{e}matiques de
l'Acae\'{e}mie Imp\'{e}riale des Sciences de St. P\'{e}tersbourg,",
volume = "IV",
pages = "145-167,286-300",
year = "1845"
}

```

P
- ignore -
\bibitem[Paige 75]\{PS75\} Paige C C.; Saunders M A.
title = "Solution of Sparse Indefinite Systems of Linear Equations", SIAM J. Numer. Anal. 12 617--629. (1975)
- ignore -
\bibitem[Paige 82a]\{PS82a\} Paige C C.; Saunders MA.
title = "LSQR: An Algorithm for Sparse Linear Equations and Sparse Least-squares", ACM Trans. Math. Softw. 8 43--71. (1982)
\(\qquad\)
- ignore -
\bibitem[Paige 82b] \{PS82b\} Paige C C.; Saunders M A.
title = "ALGORITHM 583 LSQR: Sparse Linear Equations and Least-squares Problems", ACM Trans. Math. Softw. 8 195--209. (1982)
- ignore -
\bibitem[Parker 84]\{Par84\} Parker, R. A.
title = "The Computer Calculation of Modular Characters (The Meat-Axe)", M. D. Atkinson (Ed.), Computational Group Theory

Academic Press, Inc., London 1984
\(\qquad\)
- ignore -
\bibitem[Parlett 80]\{Par80\} Parlett B N.
title = "The Symmetric Eigenvalue Problem",
Prentice-Hall. 1980
- ignore -
\bibitem[Parnas 10]\{PJ10\} Parnas, David Lorge; Jin, Ying
title = "Defining the meaning of tabular mathematical expressions",
Science of Computer Programming V75 No. 11 Nov 2010 pp980-1000 Elesevier
- ignore -
\bibitem[Parnas 95]\{PM95\} Parnas, David Lorge; Madey, Jan
title = "Functional Documents for Computer Systems",
Science of Computer Programming V25 No. 1 Oct 1995 pp41-61 Elesevier
\(\qquad\)
— axiom.bib -
@book\{Paul81,
author = "Paul, Richard",
title = "Robot Manipulators",
year = "1981",
publisher = "MIT Press",
isbn = "0-262-16082-X"
\}
— axiom.bib -
@book\{Pear56, author = "Pearcey, T.", title = "Table of the Fresnel Integral", publisher = "Cambridge University Press", year = "1956"
\}
\(\qquad\)
- ignore -
\bibitem[Pereyra 79] \{Per79\} Pereyra V.
title = "PASVA3: An Adaptive Finite-Difference Fortran Program for First Order Nonlinear, Ordinary Bounda Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science.
(ed B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76
Springer-Verlag. (1979)
```

 _ ignore -
 \bibitem[Peters 67a]{Pet67a} Peters G.
title = "NPL Algorithms Library",
Document No. F2/03/A. (1967)
_ ignore -
\bibitem[Peters 67b]{Pet67b} Peters G.
title = "NPL Algorithms Library",
Document No.F1/04/A (1967)
-
- ignore -
\bibitem[Peters 70]{PW70} Peters G.; Wilkinson J H.
title = "The Least-squares Problem and Pseudo-inverses",
Comput. J. 13 309--316. (1970)
- ignore -
\bibitem[Peters 71]{PW71} Peters G.; Wilkinson J H.
title = "Practical Problems Arising in the Solution of Polynomial Equations",
J. Inst. Maths Applics. 8 16--35. (1971)

```
\(\qquad\)
```

- ignore -
\bibitem[Pierce 82]{Pie82} R.S. Pierce
title = "Associative Algebras",
Graduate Texts in Mathematics }8
Springer-Verlag, Heidelberg, 1982, ISBN 0-387-90693-2

```
— ignore -
\bibitem[Piessens 73] \{Pie73\} Piessens R.
title = "An Algorithm for Automatic Integration", Angewandte Informatik. 15 399--401. (1973)
\(\qquad\)
- ignore -
\bibitem[Piessens 74] \{PMB74\} Piessens R.; Mertens I.; Branders M. title = "Integration of Functions having End-point Singularities", Angewandte Informatik. 16 65--68. (1974)
\(\qquad\)
- ignore -
\bibitem[Piessens 75] \{PB75\} Piessens R.; Branders M.
title = "Algorithm 002. Computation of Oscillating Integrals",
J. Comput. Appl. Math. 1 153--164. (1975)
\(\qquad\)
- ignore -
\bibitem[Piessens 76]\{PVRBM76\} Piessens R.; Van Roy-Branders M.; Mertens I. title = "The Automatic Evaluation of Cauchy Principal Value Integrals", Angewandte Informatik. 18 31--35. (1976)
\(\qquad\)
- ignore -
\bibitem[Piessens 83] \{PDUK83\} Piessens R.; De Doncker-Kapenga E.; Uberhuber C.; Kahaner D.
title = "QUADPACK, A Subroutine Package for Automatic Integration", Springer-Verlag. (1983)
```

 - ignore -
 \bibitem[Polya 37]{Pol37} Polya, G.
title = "Kombinatorische Anzahlbestimmungen fur Gruppe",
Graphen und chemische Verbindungen''
Acta Math. 68 (1937) 145-254.
_ ignore -
\bibitem[Powell 70]{Pow70} Powell M J D.
title = "A Hybrid Method for Nonlinear Algebraic Equations",
Numerical Methods for Nonlinear Algebraic Equations.
(ed P Rabinowitz) Gordon and Breach. (1970)

```
- ignore -
\bibitem[Powell 74]\{Pow74\} Powell M J D.
title = "Introduction to Constrained Optimization",
Numerical Methods for Constrained Optimization.
(ed P E Gill and W Murray) Academic Press. pp1-28. 1974
- ignore -
\bibitem[Powell 83]\{Pow83\} Powell M J D.
title = "Variable Metric Methods in Constrained Optimization", Mathematical Programming: The State of the Art.
(ed A Bachem, M Groetschel and B Korte) Springer-Verlag. pp288--311. 1983
— axiom.bib -
```

@inproceedings{Prat73,
author = "Pratt, Vaughan R.",
title = "Top down operator precedence",
booktitle = "Proc. 1st annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages",
series = "POPL'73",
pages = "41-51",
year = "1973",
url = "http://hall.org.ua/halls/wizzard/pdf/Vaughan.Pratt.TDOP.pdf",
keywords = "axiomref",
paper = "Prat73.pdf",
}

```
    - ignore -
\bibitem[Press 95]\{PTVF95\} Press, William H.; Teukolsky, Saul A.;
Vetterling, William T.; Flannery, Brian P.
    title = "Numerical Recipes in C",
Cambridge University Press (1995) ISBN 0-521-43108-5
    - ignore -
\bibitem[Pryce 77]\{PH77\} Pryce J D.; Hargrave B A.
    title = "The Scale Pruefer Method for one-parameter and multi-parameter eigenvalue problems in ODEs",
Inst. Math. Appl., Numerical Analysis Newsletter. 1(3) (1977)
    - ignore -
\bibitem[Pryce 81]\{Pry81\} Pryce J D.
    title = "Two codes for Sturm-Liouville problems",
Technical Report CS-81-01. Dept of Computer Science, Bristol University (1981)
— ignore -
\bibitem[Pryce 86]\{Pry86\} Pryce J D.
title \(=\) "Error Estimation for Phase-function Shooting Methods fo",
Sturm-Liouville Problems',
J. Num. Anal. 6 103--123. (1986)
- axiom.bib -
@misc\{Puff09,
author = "Puffinware LLC",
title = "Singular Value Decomposition (SVD) Tutorial", url = "http://www.puffinwarellc.com/p3a.htm"
\}

\section*{Q}
- ignore -
\bibitem[Quintana-Orti 06]\{QG06\} Quintana-Orti, Gregorio;
van de Geijn, Robert
title = "Improving the performance of reduction to Hessenberg form",
ACM Transactions on Mathematical Software, 32(2):180-194, June 2006.

R
— ignore -
\bibitem[Rabinowitz 70]\{Rab70\} Rabinowitz P.
title = "Numerical Methods for Nonlinear Algebraic Equations", Gordon and Breach. (1970)
- ignore -
```

\bibitem[Ralston 65]{Ral65} Ralston A.
title = "A First Course in Numerical Analysis",
McGraw-Hill. 87--90. (1965)
_ ignore -
\bibitem[Ramakrishnan 03]{Ram03} Ramakrishnan, Maya
title = "A Gentle Introduction to Lyapunov Functions",
ORSUM August 2003
url = "http://www.or.ms.unimelb.edu.au/handouts/lyaptalk.1.pdf",
_-
- ignore -
\bibitem[Ramsey 03] {Ra03} Ramsey, Norman
title = "Noweb--A Simple, Extensible Tool for Literate Programming",
url = "http://www.eecs.harvard.edu/~nr/noweb",

```
\(\qquad\)
```

 _ ignore -
 \bibitem[Redfield 27] {Red27} Redfield, J.H.
title = "The Theory of Group-Reduced Distributions",
American J. Math., 49 (1927) 433-455.

```
\(\qquad\)
```

- ignore -
\bibitem[Reinsch 67]\{Rei67\} Reinsch C H.
title = "Smoothing by Spline Functions",
Num. Math. 10 177--183. (1967)

```
\bibitem[Renka 84]{Ren84} Renka R L.
    title = "Algorithm 624: Triangulation and Interpolation of Arbitrarily Distributed Points in
```

ACM Trans. Math. Softw. 10 440--442. (1984)
-

- ignore -
\bibitem[Renka 84] \{RC84\} Renka R L.; Cline A K.
title = "A Triangle-based C Interpolation Method",
Rocky Mountain J. Math. 14 223--237. (1984)
- ignore -

```
\bibitem[Reutenauer 93]{Re93} Reutenauer, Christophe
    title = "Free Lie Algebras",
Oxford University Press, June 1993 ISBN 0198536798
```

 - ignore -
    ```
\bibitem[Reznick 93]{Rezn93} Reznick, Bruce
    title = "An Inequality for Products of Polynomials",
Proc. AMS Vol }117\mathrm{ No 4 April 1993
    paper = "Rezn93.pdf",
```

 -
 - ignore -
 \bibitem[Rich xx]\{Rixx\} Rich, A.D.; Jeffrey, D.J.
title = "Crafting a Repository of Knowledge Based on Transformation",
url = "http://www.apmaths.uwo.ca/~djeffrey/Offprints/IntegrationRules.pdf",
paper = "Rixx.pdf",
abstract = "
We describe the development of a repository of mathematical knowledge
based on transformation rules. The specific mathematical problem is
indefinite integration. It is important that the repository be not

```
confused with a look-up table. The database of transformation rules is
at present encoded in Mathematica, but this is only one convenient
form of the repository, and it could be readily translated into other
formats. The principles upon which the set of rules is compiled is
described. One important principle is minimality. The benefits of the
approach are illustrated with examples, and with the results of
comparisons with other approaches."
_ ignore -
\bibitem[Rich 10]{Ri10} Rich, Albert D.
    title = "Rule-based Mathematics",
    url = "http://www.apmaths.uwo.ca/~arich",
    _ ignore -
\bibitem[Richardson 94]{RF94} Richardson, Dan; Fitch, John
    title = "The identity problem for elementary functions and constants",
ACM Proc. of ISSAC 94 pp285-290 ISBN 0-89791-638-7
    --
    _ ignore -
\bibitem[Richtmyer 67]{RM67} Richtmyer R D.; Morton K W.
    title = "Difference Methods for Initial-value Problems",
Interscience (2nd Edition). (1967)
    _ ignore -
\bibitem[Rioboo 92]{REF-Rio92} Rioboo, R.
    title = "Real algebraic closure of an ordered field, implementation in Axiom",
In Wang [Wan92], pp206-215 ISBN 0-89791-489-9 (soft cover)
In proceedings of the ISSAC'92 Conference, Berkeley 1992 pp. 206-215.
0-89791-490-2 (hard cover) LCCN QA76.95.I59 1992
```

```
    _ ignore -
\bibitem[Rioboo 96]{Rio96} Rioboo, R.
    title = "Generic computation of the real closure of an ordered field",
In Mathematics and Computers in Simulation Volume 42, Issue 4-6,
November 1996.
    _ ignore -
\bibitem[Ritt 50]{Ritt50} Ritt, Joseph Fels
    title = "Differential Algebra",
AMS Colloquium Publications Volume 33 ISBN 978-0-8218-4638-4
    _ ignore -
\bibitem[Rote 01]{Rote01} Rote, G\"unter
    title = "Division-free algorithms for the determinant and the Pfaffian",
in Computational Discrete Mathematics ISBN 3-540-42775-9 pp119-135
    url =
        "http://page.mi.fu-berlin.de/rote/Papers/pdf/Division-free+algorithms.pdf",
    -
    - ignore -
    \bibitem[Rubey 07]{Rub07} Rubey, Martin
    title = "Formula Guessing with Axiom",
April 2007
```

\qquad

```
- ignore -
\bibitem[Rutishauser 69]\{Rut69\} Rutishauser H.
```

title = "Computational aspects of F L Bauer's simultaneous iteration method", Num. Math. 13 4--13. (1969)

- ignore -
\bibitem[Rutishauser 70]\{Rut70\} Rutishauser H.
title = "Simultaneous iteration method for symmetric matrices", Num. Math. 16 205--223. (1970)

S
— axiom.bib -

```
@book{Scha66,
    author = "Schafer, R.D.",
    title = "An Introduction to Nonassociative Algebras",
    year = "1966",
    publisher = "Academic Press, New York",
    comment = "documentation for AlgebraGivenByStructuralConstants"
}
```

 - ignore -
 \bibitem[Schoenberg 53]\{SW53\} Schoenberg I J.; Whitney A.
title $=$ "On Polya Frequency Functions III",
Trans. Amer. Math. Soc. 74 246--259. (1953)
\qquad

- ignore -
\bibitem[Schoenhage 82] \{Sch82\} Schoenhage, A.
title $=$ "The fundamental theorem of algebra in terms of computational complexity", preliminary report, Univ. Tuebingen, 1982

```
- ignore -
\bibitem[Schonfelder 76]{Sch76} Schonfelder J L.
    title = "The Production of Special Function Routines for a Multi-Machine Library",
Software Practice and Experience. 6(1) (1976)
```

- axiom.bib -

```
@book{Segg93,
    author = "{von Seggern}, David Henry",
    title = "CRC Standard Curves and Surfaces",
    publisher = "CRC Press",
    year = "1993",
    isbn = "0-8493-0196-3"
}
```

- ignore -

```
\bibitem[Seiler 95a]{Sei95a} Seiler, W.M.; Calmet, J.
    title = "JET -- An Axiom Environment for Geometric Computations with Differential Equations",
    keywords = "axiomref",
    paper = "Sei95a.pdf",
```

 - ignore -
 \bibitem[Shepard 68]\{She68\} Shepard D.
title = "A Two-dimensional Interpolation Function for Irregularly Spaced Data",
Proc. 23rd Nat. Conf. ACM. Brandon/Systems Press Inc.,
Princeton. 517--523. 1968
- ignore -

```
\bibitem[Shirayanagi 96]{Shir96} Shirayanagi, Kiyoshi
    title = "Floating point Gr\"obner bases",
Mathematics and Computers in Simulation 42 pp 509-528 (1996)
    paper = "Shir96.pdf",
    abstract = "
        Bracket coefficients for polynomials are introduced. These are like
        specific precision floating point numbers together with error
        terms. Working in terms of bracket coefficients, an algorithm that
        computes a Gr{\"o}bner basis with floating point coefficients is
        presented, and a new criterion for determining whether a bracket
        coefficient is zero is proposed. Given a finite set $F$ of polynomials
        with real coefficients, let $G_\mu$ be the result of the algorithm for
        $F$ and a precision $\mu$, and $G$ be a true Gr{\"o}bner basis of
        $F$. Then, as $\mu$ approaches infinity, $G_\mu$ converges to $G$
        coefficientwise. Moreover, there is a precision $M$ such that if
        $\mu \ge M$, then the sets of monomials with non-zero coefficients of
        $G_\mu$ and $G$ are exactly the same. The practical usefulness of the
        algorithm is suggested by experimental results."
```

 - ignore -
 \bibitem[Singer 89]\{Sing89\} Singer, M.F.
''Formal Solutions of Differential Equations',
J. Symbolic COmputation 10, No. 1 59-94 (1990)
paper = "Sing89.pdf",
keywords = "survey",
abstract = "
We give a survey of some methods for finding formal solutions of
differential equations. These include methods for finding power series
solutions, elementary and liouvillian solutions, first integrals, Lie
theoretic methods, transform methods, asymptotic methods. A brief
discussion of difference equations is also included."
- ignore -
\bibitem[Sit 92]\{REF-Sit92\} Sit, William
title = "An Algorithm for Parametric Linear Systems",
J. Sym. Comp., April 1992

- ignore -
\bibitem[Smith 67]\{Smi67\} Smith B T.
title = "ZERPOL: A Zero Finding Algorithm for Polynomials Using Laguerre's Method",
Technical Report. Department of Computer Science, University of Toronto, Canada. (1967)
\qquad
- ignore -
\bibitem[Smith 85]\{Smi85\} Smith G D.
title = "Numerical Solution of Partial Differential Equations: Finite Difference Methods", Oxford University Press (3rd Edition). (1985)
- ignore -
\bibitem[Sobol 74]\{Sob74\} Sobol I M.
title = "The Monte Carlo Method",
The University of Chicago Press. 1974
\qquad
- ignore -
\bibitem[Steele 90]\{Ste90\} Steele, Guy L.
title $=$ "Common Lisp The Language",
Second Edition ISBN 1-55558-041-6 Digital Press (1990)
- axiom.bib -
@misc\{Stic93,
author = "Stichtenoth, H.",
title = "Algebraic function fields and codes",
publisher = "Springer-Verlag",
year = "1993"
\}
- ignore -

```
\bibitem[Stinson 90]{Stin90} Stinson, D.R.
''Some observations on parallel Algorithms for fast exponentiation
in $GF(2^n)$',
Siam J. Comp., Vol.19, No.4, pp.711-717, August }199
    paper = "Stin90.pdf",
    abstract = "
        A normal basis represention in $GF(2^n)$ allows squaring to be
        accomplished by a cyclic shift. Algorithms for multiplication in
        $GF(2^n)$ using a normal basis have been studied by several
        researchers. In this paper, algorithms for performing exponentiation
        in $GF(2^n)$ using a normal basis, and how they can be speeded up by
        using parallelization, are investigated."
```

 - ignore -
 \bibitem[Stroud 66] \{SS66\} Stroud A H. ; Secrest D.
title = "Gaussian Quadrature Formulas",
Prentice-Hall. (1966)
— ignore -
\bibitem[Stroud 71]\{Str71\} Stroud A H.
title = "Approximate Calculation of Multiple Integrals",
Prentice-Hall 1971
- ignore -
\bibitem[Swarztrauber 79]\{SS79\} Swarztrauber P N.; Sweet R A.
title = "Efficient Fortran Subprograms for the Solution of Separable Elliptic Partial Differential Equati
ACM Trans. Math. Softw. 5 352--364. (1979)
— ignore -
\bibitem[Swarztrauber 84]\{SS84\} Swarztrauber P N. title = "Fast Poisson Solvers",
Studies in Numerical Analysis. (ed G H Golub)
Mathematical Association of America. (1984)

T

- axiom.bib -
@book\{Tait1890,
author = "Tait, P.G.", title = "An Elementary Treatise on Quaternions", publisher = "C.J. Clay and Sons, Cambridge University Press Warehouse, Ave Maria Lane",
year = "1890"
\}
\qquad
— ignore -
\bibitem[Taivalsaari 96]\{Tai96\} Taivalsaari, Antero
title $=$ "On the Notion of Inheritance",
ACM Computing Surveys, Vol 28 No 3 Sept 1996 pp438-479
\qquad
- ignore -
\bibitem[Temme 87]\{Tem87\} Temme N M.
title $=$ "On the Computation of the Incomplete Gamma Functions for Large Values of the Paramete Algorithms for Approximation. (ed J C Mason and M G Cox)
Oxford University Press. (1987)
- ignore -

```
\bibitem[Temperton 83a]{Tem83a} Temperton C.
    title = "Self-sorting Mixed-radix Fast Fourier Transforms",
J. Comput. Phys. 52 1--23. (1983)
```

 - ignore -
 \bibitem[Temperton 83b]\{Tem83b\} Temperton C.
title $=$ "Fast Mixed-Radix Real Fourier Transforms",
J. Comput. Phys. 52 340--350. (1983)
— axiom.bib -
@article\{Thur94,
author = "Thurston, William P.",
title = "On Proof and Progress in Mathematics",
journal = "Bulletin AMS",
volume = "30",
number = "2",
month = "April",
year = "1994",
url = "http://www.ams.org/journals/bull/1994-30-02/S0273-0979-1994-00502-6/S0273-0979-1994-00502-6.pdf",
paper $=$ "Thur94.pdf",
\}
\qquad

U
\qquad
\bibitem[Unknown 61] \{Unk61\} Unknown
title = "Chebyshev-series",
Modern Computing Methods
Chapter 8. NPL Notes on Applied Science (2nd Edition). 16 HMSO. 1961

V

- ignore -
\bibitem[Van Dooren 76] \{vDDR76\} Van Dooren P.; De Ridder L.
title = "An Adaptive Algorithm for Numerical Integration over an N-dimensional Cube", J. Comput. Appl. Math. 2 207--217. (1976)
- ignore -
\bibitem[van Hoeij 94]\{REF-vH94\} van Hoeij, M.
title $=$ "An algorithm for computing an integr",
basis in an algebraic function field',
\{\sl J. Symbolic Computation\}
18(4):353-364, October 1994
- ignore -
\bibitem[Van Loan 92] \{Van92\} Van Loan, C.
title $=$ "Computational Frameworks for the Fast Fourier Transform", SIAM Philadelphia. (1992)

W

- ignore -
\bibitem[Wait 85]\{WM85\} Wait R.; Mitchell A R.
title = "Finite Element Analysis and Application",
Wiley. (1985)
\qquad
- ignore -
\bibitem[Wang 92] \{Wang92\} Wang, D.M.
title $=$ "An implementation of the characteristic set method in Maple", Proc. DISCO'92 Bath, England
- ignore -
\bibitem[Ward 75] \{War75\} Ward, R C.
title = "The Combination Shift QZ Algorithm", SIAM J. Numer. Anal. 12 835--853. 1975
- axiom.bib -
@misc\{Watt03,
author = "Watt, Stephen", title = "Aldor",
url = "http://www.aldor.org",
year = "2003"
\}
- axiom.bib -
@misc\{Weil71,
author $=$ "Weil, Andr\'\{e\}",
title $=$ "Courbes alg\'\{e\}briques et vari\'\{e\}t\'\{e\}s Abeliennes",
year = "1971"
\}
- ignore -

```
\bibitem[Weisstein]{Wein} Weisstein, Eric W.
    title = "Hypergeometric Function",
MathWorld - A Wolfram Web Resource
    url = "http://mathworld.wolfram.com/HypergeometricFunction.html",
```

- axiom.bib -

```
@misc{Weit03,
    author = "Weitz, E.",
    title = "CL-WHO -Yet another Lisp markup language",
    year = "2003",
    url = "http://www.weitz.de/cl-who/"
}
```

- axiom.bib -
@misc\{Weit06,
author = "Weitz, E.",
title = "HUNCHENTOOT - The Common Lisp web server formerly known as TBNL",
year = "2006",
url = "http://www.weitz.de/hunchentoot"
\}
- ignore -
\bibitem[Wesseling 82a]\{Wes82a\} Wesseling, P.
title = "MGD1 - A Robust and Efficient Multigrid Method", Multigrid Methods. Lecture Notes in Mathematics. 960 Springer-Verlag. 614--630. (1982)
- ignore -
\bibitem[Wesseling 82b]\{Wes82b\} Wesseling, P.
title = "Theoretical Aspects of a Multigrid Method",
SIAM J. Sci. Statist. Comput. 3 387--407. (1982)
- ignore -

```
\bibitem[Wicks 89]{Wic89} Wicks, Mark; Carlisle, David, Rahtz, Sebastian
    title = "dvipdfm.def",
    url = "http://web.mit.edu/texsrc/source/latex/graphics/dvipdfm.def",
```

- ignore -
\bibitem[Wiki 3]\{Wiki3\}.
title = "Givens Rotations",
url = "http://en.wikipedia.org/wiki/Givens_rotation",
\qquad
— axiom.bib -
@misc\{Wiki14a, author = "ProofWiki", title = "Euclidean Algorithm", url = "http://proofwiki.org/wiki/Euclidean_Algorithm" \}
- axiom.bib -
@misc\{Wiki14b,
author = "ProofWiki", title = "Division Theorem", url = "http://proofwiki.org/wiki/Division_Theorem" \}
- ignore -
\bibitem[Williamson 85]\{Wil85\} Williamson, S.G. title = "Combinatorics for Computer Science", Computer Science Press, 1985.

```
            - ignore -
\bibitem[Wilkinson 71]{WR71} Wilkinson J H.; Reinsch C.
    title = "Handbook for Automatic Computation II, Linear Algebra",
Springer-Verlag. 1971
```

\qquad

```
    _ ignore -
\bibitem[Wilkinson 63]{Wil63} Wilkinson J H.
    title = "Rounding Errors in Algebraic Processes",
    Chapter 2. HMSO. (1963)
    -
    - ignore -
\bibitem[Wilkinson 65]{Wil65} Wilkinson J H.
    title = "The Algebraic Eigenvalue Problem",
    Oxford University Press. (1965)
    \square
    _ ignore -
    \bibitem[Wilkinson 78]{Wil78} Wilkinson J H.
    title = "Singular Value Decomposition -- Basic Aspects",
Numerical Software -- Needs and Availability.
(ed D A H Jacobs) Academic Press. (1978)
    - ignore -
\bibitem[Wilkinson 79]{Wil79} Wilkinson J H.
    title = "Kronecker's Canonical Form and the QZ Algorithm",
Linear Algebra and Appl. 28 285--303. 1979
```

```
_ ignore -
\bibitem[Wisbauer 91]{Wis91} Wisbauer, R.
    title = "Bimodule Structure of Algebra",
Lecture Notes Univ. Duesseldorf 1991
    -
    _ ignore -
\bibitem[Woerz-Busekros 80]{Woe80} Woerz-Busekros, A.
    title = "Algebra in Genetics",
Lectures Notes in Biomathematics 36, Springer-Verlag, Heidelberg, 1980
    _ ignore -
\bibitem[Wolberg 67]{Wol67} Wolberg J R.
''Prediction Analysis')
Van Nostrand. (1967)
    _ ignore -
\bibitem[Wolfram 09]{Wo09} Wolfram Research
    url = "http://mathworld.wolfram.com/Quaternion.html",
```

\qquad

```
- ignore -
\bibitem[Wu 87]\{WU87\} Wu, W.T.
title = "A Zero Structure Theorem for polynomial equations solving", MM Research Preprints, 1987
```

- ignore -
\bibitem[Wynn 56] \{Wynn56\} Wynn P.
title = "On a Device for Computing the \$e_m(S_n)\$ Transformation", Math. Tables Aids Comput. 10 91--96. (1956)

Y
Z

- ignore -

```
\bibitem[Zakrajsek 02]{Zak02} Zakrajsek, Helena
    title = "Applications of Hermite transform in computer algebra",
    url = "http://www.imfm.si/preprinti/PDF/00835.pdf",
    paper = "Zak02.pdf",
    abstract = "
        let $L$ be a linear differential operator with polynomial
        coefficients. We show that there is an isomorphism of differential
        operators ${\bf D_\alpha}$ and an integral transform ${\bf H_\alpha}$
        (called the Hermite transform) on functions for which $({\bf
        D_\alpha}{\bf L})f(x)=0$ implies ${\bf L}{\bf H_alpha}(f)(x)=0$. We
        present an algorithm that computes the Hermite transform of a rational
        function and use it to find $n+1$ linearly independent solutions of
        ${\bf L}y=0$ when $({\bf D_\alpha}{\bf L})f(x)=0$ has a rational
        solution with $n$ distinct finite poles."
```

 - axiom.bib -
 @misc\{Zdan14,
author = "Zdancewic, Steve and Martin, Milo M.K.",
title = "Vellvm: Verifying the LLVM",
url = "http://www.cis.upenn.edu/~stevez/vellvm"
\}

- ignore -
\bibitem[Zhi 97]\{Zhi97\}
author = "Zhi, Lihong",
title = "Optimal Algorithm for Algebraic Factoring",
year = "1997",
url = "http://www.mmrc.iss.ac.cn/ ${ }^{\text {l } l z h i / P u b l i c a t i o n s / z o p f a c . p d f ", ~}$
paper = "Zhi97.pdf",
abstract = "
This paper presents an optimized method for factoring multivariate
polynomials over algebraic extension fields which defined by an
irreducible ascending set. The basic idea is to convert multivariate
polynomials to univariate polynomials and algebraic extensions fields
to algebraic number fields by suitable integer substitutions, then
factorize the univariate polynomials over the algebraic number fields.
Finally, construct multivariate factors of the original polynomial by
Hensel lemma and TRUEFACTOR test. Some examples with timing are
included."
— axiom.bib -

```
@misc{0Con08,
    author = "O'Connor, Christine",
    title = "{Christine Jeanne O'Connor Obituary}",
    year = "2008",
    url = "http://www.cargainfuneralhomes.com/home/index.cfm/obituaries/view/fh_id/10350/id/183842"
}
```

- axiom.bib -
@book\{LaVa06,
author = "LaValle, Steven M.",
title = "Planning Algorithms",
year = "2006",
publisher = "Cambridge University Press"
\}
- axiom.bib -

```
@misc{Hale13,
    author = "Hales, Thomas C.",
    title = "Mathematics in the Age of the Turing Machine",
    year = "2013",
    url = "http://arxiv.org/pdf/1302.2898v1",
    paper = "Hale13.pdf",
    abstract = "
        This article gives a survey of mathematical proofs that rely on
        computer calculations and formal proofs"
}
```

_ axiom.bib -
@misc\{Martxx,
author = "Martin, W.A. and Fateman, R.J.",
title = "The Macsyma System",
url = "http://groups.csail.mit.edu/mac/classes/symbolic/spring13/readings/simplification/marti
paper = "Martxx.pdf",
abstract = "
MACSYMA is a system for symbolic manipulation of algebraic expressions which is being developed at Project MAC, M.I.T. This paper discusses its philosophy, goals, and current achievements.

Drawing on the past work of Maring, Moses, and Engelman, it extends the capabilities of automated algebraic manipulation systems in several areas, including
a) limit calculations
b) symbolic integration
c) solution of equations
d) canonical simplification
e) user-level pattern matching
f) user-specified expression manipulation
g) programming and bookkeeping assistance

MACSYMA makes extensive use of the power of its rational function subsystem. The facilities derived from this are discussed in considerable detail.

An appendix briefly notes some highlights of the overall system."

```
@misc{Andr00,
    author = "Andrews, George E. and Knopfmacher, Arnold and Paule, Peter
            and Zimmermann, Burkhard",
    title = "Engel Expansions of q-Series by Computer Algebra",
    year = "2000",
    url = "http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.207",
    paper = "Andr00.pdf",
    abstract = "
        The $q$-Engle Expansion is an algorithm that leads to unique series
        expansions of $q$-series. Various examples related to classical
        partition theorems, including the Rogers-Ramanujan identities together
        with the elegant generalization found by Garrett, Ismail and Stanton,
        have been described recently. The object of this paper is to present
        the computer algebra package Engel, written in Mathematics, that has
        already played a signiicant role in this work. The package now is made
        freely available via the web and should help to intensify research in
        this new branch of $q$-series theory. Among various illustrative
        examples we present a new infinite Rogers-Ramanujan type family that
        has been discovered by using the package."
}
```

 - axiom.bib -
 @misc\{Abra99,
author = "Abramov, Sergei A. and van Hoeij, Mark",
title $=$ "Integration of Solutions of Linear Functional Equations",
year = "1999",
url = "http://www.math.fsu.edu/~hoeij/papers/itsf99/ab_final.pdf",
paper = "Abra99.pdf",
abstract = "
We introduce the notion of the adjoint Ore ring and give a definition
of adjoint polynomial, operator and equation. We apply this for
integrating solutions of Ore equations."
\}

```
@misc{Bail97,
    author = "Bailey, David and Borwein, Peter and Plouffe, Simon",
    title = "On the Rapid Computation of Various Polylogarithmic Constants",
    year = "1997",
    url = "http://www.ams.org/journals/mcom/1997-66-218/S0025-5718-97-00856-9/S0025-5718-97-00856-
    paper = "Bail97.pdf",
    abstract = "
        We give algorithms for the computation of the $d$-th digit of certain
        transcendental numbers in various bases. These algorithms can be
        easily implemented (multiple precision arithmetic is not needed),
        require virtually no memeory, and feature run times that scale nearly
        linearly with the order of the digit desired. They make it feasible to
        compute, for example, the billionth binary digit of log(2) or $\pi$ on
        a modest work station in a few hours run time.
        We demonstrate this technique by computing the ten billionth
        hexadecimal digit of $\pi$, the billionth hexadecimal digits of
        $\pi^2$, log(2), and log${}^2$(2), and the ten billionth decimal digit
        of log(9/10).
        These calculations rest on the observation that very special types of
        identities exist for certain numbers like $\pi$, $\pi^2$, log(2) and
        log${}^2$. These are essentially polylogarithmic ladders in an integer
        base. A number of these identities that we derive in this work appear
        to be new, for example the critical identity for $\pi$:
    \\\pi=\sum_{i=0}^\infty{\frac{1}{16^i}\left(
    \frac{4}{8i+1}-\frac{2}{8i+4}-\frac{1}{8i+5}-\frac{1}{8i+6}\right)}\]"
}
```

 - axiom.bib -
 @misc\{Thie15,
author = "Thiery, Nicolas M.",
title = "Open Digital Research Environment Toolkit for the Advancement of Mathematics",
year = "2015",
url = "http://opendreamkit.org",
paper = "Thie15.pdf",
abstract =
"OpenDreamKit will deliver a flexible toolkit enabling research groups
to set up Virtual Research Environments, customised to meet the varied
needs of research projects in pure mathematics and applications, and
supporting the full research life-cycle from exploration, through
proof and publication, to archival and sharing of data and code.

OpenDreamKit will be built out of a sustainable ecosystem of community-developed open software, databases, and ser- vices, including popular tools such as LINBOX, MPIR, SAGE (sagemath.org), GAP, PARI/GP, LMFDB, and SINGULAR. We will extend the JUPYTER Notebook environment to provide a flexible user interface. By improving and unifying existing build- ing blocks, OpenDreamKit will maximise both sustainability and impact, with beneficiaries extending to scientific computing, physics, chemistry, biology and more, and including researchers, teachers, and industrial practitioners.

We will define a novel component-based VRE architecture and adapt existing mathematical software, databases, and user interface components to work well within it on varied platforms. Interfaces to standard HPC and grid services will be built in. Our architecture will be informed by recent research into the sociology of mathematical collaboration, so as to properly support actual research practice. The ease of set up, adaptability and global impact will be demonstrated in a variety of demonstrator VREs.

We will ourselves study the social challenges associated with large-scale open source code development and publications based on executable documents, to ensure sustainability.

OpenDreamKit will be conducted by a Europe-wide steered by demand collaboration, including leading mathematicians, computational researchers, and software developers with a long track record of delivering innovative open source software solutions for their respective communities. All produced code and tools will be open source."

Chapter 3

Bibliography

Bibliography

Chapter 4

Index

Index

Ablamowicz, Rafal, 265
Abraham, Ralph, 156
Abramov, S.A., 140, 142
Abramov, Sergei A., 69, 111, 266, 351
Abramowitz, Milton, 266
Adamchik, Victor, 79
Adams, Andrew A., 47, 48, 204
Adams, William W., 174
algorithm
baby steps/giant steps, 11
Berlekamp, 6, 15, 19
Berlekamp/Massey, 8, 9
block Lanczos, 11
block Wiedemann, 11
Chinese Remainder, 10
Clarkson, 10
cylindrical algebraic decomposition, 349
direct sparse linear solution, 20
Euclidean, 43
Gaussian elimination, 20
iterative sparse linear solution, 20
Lanczos, 6, 11, 19
Lanczos randomized, 11
Las Vegas, 11
Massey, 19
matrix parallel normal form, 16
parallel randomized, 17, 18
Wiedemann, 6, 11, 15, 19
Wiedemann coordinate recurrence, 15
Alonso-Jiménez, J.A., 49
Altmann, Simon L., 266
Ames W F, 267
Amos D E, 267
Anderson, Edward, 267
Andrews, George E., 174, 350
Angell, Tom, 109
Anthony G. T., 267
approximating polynomial zeros, 20
Arno, D.S., 267
Arsac, Olivier, 282
Atkinson, Kendall, 65
Aubry, Phillippe, 268
Augot, D., 173
Avgoustis, Ioannis Dimitrios, 79
baby steps/giant steps algorithm, 11
Baclawski, Krystian, 175
Baddoura, Mohamed Jamil, 80
Baez, John C., 46
Bailey P. B., 269
Bailey, David, 351
Bajpai, S.D., 81
Baker, George A., 269
Baker, Martin, 269
Ballarin, Clemens, 51
banded linear systems, 20
Banks D. O., 270
Bard Y., 270
Barendregt, Henk, 67
Barreiro, Hans, 191
Barrodale I., 270
Beaumont, James, 128, 129
Beauzamy, Bernard, 271
Beneke, T., 184
Berlekamp algorithm, 6, 15, 19
Berlekamp/Massey algorithm, 8, 9
Bernardin, Laurent, 136, 165
Bertot, Yves, 52
Bertrand, Laurent, 271
Berzins M., 271, 272
Birkhoff, G., 272
Birkhoff, Garret, 316
bit complexity, 11
Bjork, A., 282
black box, 15, 19
black box abstraction, 13, 14
black box exact linear algebra, 6
Blair, Fred W., 176
Bleys, Joris, 314
block Lanczos algorithm, 11
block Wiedemann algorithm, 11
Boehm, Hans-J., 63, 177
Borwein, Jonathan, 185
Borwein, Peter, 167, 351
Bostock, Mike, 66
Boulanger, Jean-Louis, 178, 179
Boulmé, S., 52
Boulton, Richard, 178
Boyd, David W., 272
Boyer, Brice B., 170, 172
Boyle, Ann, 218
Bradford, Russell, 39, 54, 128-130, 132
Braman, K., 272, 273
Branders, M., 327
Brankin R. W., 271
Brent, R. P., 273
Bressoud, David, 48
Briggs, Keith, 64
Brigham E. O., 273
Brillhart, John, 273, 274
Broadbery, Peter A., 176, 258, 259
Bronstein, Manuel, 36, 37, 69-75, 81-84, 180184, 274, 275
Brooker, Marc, 61
Brown, Christopher W., 275, 276
Brown, Ronald, 185
Brunelli, J.C., 182
Buchberger, Bruno, 186
Buhl, Soren L., 186
Bunch, J. R., 285
Buonopane, R. A., 213
Burge, William H., 186, 187, 218, 257, 276
Butland, J., 292
Byers, R., 272, 273
Calmet, J., 188, 247, 336
Camion, Paul, 188
Canny, J., 161
Cantor, D.G., 118
Capriotti, Olga, 188, 189

Carette, Jacques, 78
Carlisle, David, 188, 344
Carlson, B. C., 277, 278
Carpent, Quentin, 189
Cartan, Henri, 154
Cartwright, Robert, 63
Casinghino, Chris, 50
Castéran, Pierre, 52
Cauchy, Augustin-Lux, 278
Caviness, Bob F., 104-106, 186
Chéze, Guillaume, 137, 278
Chan, K.C., 33
Char, B., 165
characteristic polynomial, 11
Charlwood, Kevin, 85
Charpin, P., 173, 191
Chen, L., 6
Cherry, G.W., 86
Childs, B., 279
Chinese remainder, 19
Chinese remainder algorithm, 10
Chlipala, Adam, 49
Chudnovsky, David V., 189, 190
Chudnovsky, G.V., 189, 190
Churchill, R.C., 87
Chyzak, Frédéric, 130
Clarson algorithm, 10
Clausen, M., 279
Clenshaw, C. W., 279, 280
Cline, A. K., 280, 332
coefficient matrix, 13, 14
Cohen, Arjeh M., 188, 189, 191
Cohen, G., 191
Comer, Matthew T., 7, 170
condition number, 6
Conil, Christophe, 189
Conrad, Marc, 191, 192
convolution of vectors, 20
Conway, John H., 280
coordinate recurrence, 19
coordinate recurrences, 19
Corless, Robert M., 39, 130, 166
Courteau, Bernard, 188
Cox M. G., 267
Cox, M. G., 280-282
Crank, J., 65

Curtis, A. R., 282
Curtis, R., 280
Cuypers, Hans, 189, 191, 192
cylindrical algebraic decomposition, 349
Czapor, S.R., 90, 211
Dahlquist, G., 282
Dalmas, Stéphane, 192, 193, 282
Daly, Timothy, 53, 193, 194
Daniel, J. W., 279
Danielsson, Nils Anders, 53
Dantzig, G. B., 283
Davenport, James H., 39, 54, 75, 87-89, 97, Fateman, Richard J., 37, 64, 89, 201, 206, 128-132, 195-200, 207, 238, 283
Davis, Jennifer A., 57, 58
Davis, P. J., 283
De Boor, C., 284
De Doncker, E., 284
De Doncker-Kapenga, E., 327
De Ridder, L., 342
Deardeuff, Michael, 61
Delenclos, Jonathon, 111
Demmel, J. W., 284
Denman, E., 279
Dennis, J. E. Jr., 284, 285
Dewar, Mike C., 200, 201
Diaz, Angel, 19, 20, 33-35, 122
Dicrescenzo, C., 201
Dierckx, P., 285
Dingle, Adam, 201
direct sparse linear solution algorithm, 20
division-free complexity, 11
Dolzmann, Andreas, 55
Domínguez, César, 203
Dongarra, Jack J., 285-287
Dooley, Sam, 202, 258
Dos Reis, Gabriel, 55, 202, 231, 249
Doye, Nicolas James, 202, 203
Dreckmann, Winfried, 185
Drska, Ladislav, 232
Du Croz, Jeremy J., 286, 287
Ducos, Lionel, 287
Duff, I. S., 287
Dumas, Jean-Guillaume, 33, 172
Dunstan, Martin, 48, 56, 57, 204
Duval, Dominique, 201, 205, 287-289

Eberly, W., 6, 11
Emiris, I., 20
England, Matthew, 54, 132
Eröcal, Burçin, 149
Eröcal, Burcin, 206
Erlingsson, U., 164
Euclidean algorithm, 43
exact linear algebra, 7
explain
resultant, 12
Sylvester matrix, 11

289, 350
Faure, Christéle, 199, 207
Federer, Herbert, 155
FFT and fast polynomial arithmetic, 20
finite field sparse matrix analysis, 6
Fitch, John P., 208, 333
Flanders, Harley, 155
Fletcher, John P., 290
Floyd, R. W., 291
Fogus, Michael, 209
Fokkinga, Maarten, 47
Forsythe, G. E., 291
Fortenbacher, A., 209, 279, 291
Fouche, Francois, 209
Fox L., 292
Franke, R., 292
Frebonius normal form, 11
Freeman, T.S., 35
French, Tim, 191, 192
Fritsch, F. N., 292
Froberg, C. E., 292
Gaëtano, Marc, 192
Gaboardi, Marco, 50
Gabriel, Richard P., 250
Gao, Shuhong, 31, 124
Garbow, B. S., 319
Garcia, A., 293
Gaussian elimination algorithm, 20
Gautier, T., 33
Gautschi, W., 294
gcd over finite field, 43
Gebauer, Rüdiger, 210

Geddes, K. O., 89, 90, 211
Geller, Murray, 40
Gentlemen, W. M., 294, 295
Genz, A. C., 295
Gerhard, J., 145
Gerhard, Jürgen, 293
Gianni, Patrizia, 195, 197, 198, 211, 212
Gibbons, Jeremy, 53
Giesbrecht, M., 145
Giesbrecht, Mark, 33, 114, 293
Gil, I. , 212
Gill, P. E., 295-297
Giorgi, P., 33
Gladwell I., 271
Gladwell, I., 298
Goedel, 298
Golden, V. Ellen, 213
Goldman, L., 299
Golub, Gene H., 299
Gonnet, Gaston H., 213
Gonshor, H., 4
González-Vega, L., 287
Goodloe, A., 213
Goodwin, B. M., 213
Gosper, R. William, 140
Gottlieben, Hanne, 47, 48, 178, 204, 214
Gräbe, Hans-Gert, 214
gröbner bases, 20
Grabmeier, Johannes, 166, 215, 274, 299, 300
Granville, William Anthony, 300
Graves-Morris, Peter, 269
Grazini, Stefano, 313
greatest common divisor, 43
Greenberg, Michael, 50
Gregory, B., 159
Grenet, Bruno, 117, 168
Greve, David A., 58
Griesmer, James H., 176, 215-217
Griffiths, D. F., 320
Gruntz, Dominik, 217, 300
Gómez-Díaz, Teresa, 176, 212
H. Gollan, 299

Haché, G., 301, 302
Hales, Thomas C., 349
Hall, G., 302

Halliday, J., 304
Hamdy, S., 302
Hammarling S., 297, 302
Hammarling, S., 286
Hammersley, J. M., 302
Hamming, R W., 66
Han, Welmin, 65
Handscomb, D. C., 302
Hanson, R. J., 311
Hardin, David S., 57, 58
Hardin, T., 52
Hardy, G.H., 90
Hardy, Ruth, 178
Hargrave, B. A., 329
Harrington, S.J., 90
Hassner, Martin, 218
Hathway, Arthur S., 303
Hayashi, K., 303
Hayes J. G., 267
Hayes, J. G., 281, 303, 304
Hebisch, Waldek, 264
Heck, Andrew, 218
Hendriks, Maxim, 192
Henrici, Peter, 304
Henryk, Minc, 319
Hensel lifting, 10
Hermite form matrix, 16
Hermite, E., 91
Higham, Nicholas J., 304
Hillstrom, K. E., 319
Hirschkoff, D., 52
Hitz, M.A., 32, 35, 165
Hock, W., 304
Hogan, R.W., 309
homogeneous solutions of linear systems, 13, 14
Horowitz, Ellis, 91
Householder, Alston S., 305
Hovinen, B., 33
Hritcu, Catalin, 50
Huang, M.D., 305
Huber, K., 215
Hughes, John, 53
Huguet, L., 218
Hussain, M. A., 213
Hutton, Sharon E., 26

Ierardi, D., 305
Iglio, Pietro, 258, 259
Imirzian, G., 35
integer matrix, 11
iterative sparse linear solution algorithm, 20
Itoh, T., 306
Iyanaga, Shokichi, 306
Iyanaga, Yukiyosi Kawada, 306
Jacob, G., 219
Jacobson, N., 306
James, Gordon, 307
Jansson, Patrik, 53
Janßen, R., 219
Jarvi, Jaakko, 249
Jaswon, M. A., 307
Jeffrey, Alan, 307
Jeffrey, David J. 39, 91, 92, 100, 130, 132, Krogh, F.1., 311
Jeffey, David J., 39, 91, 92, 100, 130, 132, Krylov subspace, 15 133, 332 Krylov subspaces, 19
Jenks, Richard D., 176, 190, 195, 215-217, Kung, H. T., 273
219-224, 251, 257 Kurowski I., 270
Jennings, A., 307 Kusche, K., 227
Jin, Ying, 324
Joswig, Michael, 224
Joswig, Rainer, 241
Joyner, David, 224
Jung, F., 205
Kahan, W., 133
Kalkbrener, M., 308
Kaltofen, Erich, 5-36, 42, 69, 78, 112-128, 158-172, 215
Kamareddine, Fairouz, 67
Kaminski, Kai, 264
Kangkook, J., 303
Kantor, I.L., 308
Karr, Michael, 141, 143
Kauers, Manuel, 146, 147, 225
Kaufmann, Matt, 308
Keady, G., 225
Kelsey, Tom, 38, 48, 56, 57, 204, 214, 225, 226
Kendall, W.S., 226
Kerber, A., 300
Kerber, Adalbert, 307
Kincaid, D.R., 311

Kitz, M.A., 117
Kiymaz, Onur, 92
Knopfmacher, Arnold, 350
Knopper, Jan Willem, 192
Knowles, P., 93
Knuth, Donald E., 42, 308, 309
Kobayashi, H., 309
Koepf, Wolfram, 143
Koiran, Pascal, 117, 120, 168
Kolchin, E.R., 309
Koseleff, P.-V., 227
Koutschan, Christoph, 130, 310
Kozen, Dexter, 310
Kragler, R., 93
Krieger, U., 215
Krishnamoorthy, M.S., 15, 16
Krogh, F.T., 311

Kusche, K., 227
Kutzler, B., 227
Lösch, Friedrich, 315
Labahn, George, 90, 92, 211
Lafaille, Sébastien, 73
Lafon, J.C., 142
Lahey, Tim, 227
Lakshman, Yagati N., 32, 35, 116, 161
Lambe, L. A., 156
Lambe, Larry A., 227-229
Lambov, Branimir, 64
Lamport, Leslie, 58-60, 310
Lanczos algorithm, 6, 11, 19
Landau, Susan, 310
Lang, S., 93
Laohakosol, Vichian, 94
Las Vegas, 11
Las Vegas algorithm, 11
Lascu, O., 303
Lauder, A., 124
Lautrup, B., 310
Laval, Philippe B., 110
LaValle, Steven M., 349
Lavin, Mark, 167

Lawson, C. L., 311
Lazard, Daniel, 268, 312
Le Brigand, D., 301, 313
Le, H.Q., 111
Lebedev, Yuri, 229
LeBlanc, S.E., 229
Lecerf, Grégoire, 120, 137, 138, 230, 278
Lee, A., 213
Lee, Wen-shin, 114, 115, 169
Leerawat, Utsanee, 94
Lefévre, Vincent, 65
Legendre, George L., 313
Lenstra, H. W., 313
Leopardi, Paul, 313
Leroy, André, 111
Leslie, Martin, 94
Levelt, A. H. M., 230
Lewis, J. G,, 314
Li, Bin, 27, 28, 167
Li, Xin, 230
Li, Yue, 55, 231
Li, Ziming, 75, 111
Lichtblau, Daniel, 94
Lidl, R., 314
Ligatsikas, Zenon, 231
Limpouch, Jiri, 232
linear generators of scalar sequences, 9
linear systems over finite fields, 15
Linger, Richard C., 314
Linton, Steve A., 47, 56, 57, 204, 232
Liouville, Joseph, 95, 96
Lipson, D., 314
Liska, Richard, 232
Lobo, A., 13, 14, 34, 35, 115, 164
Loetzsch, Martin, 314, 315
Loustaunau, Philippe, 174, 213
Lozier, Daniel W., 322
Lucks, Michael, 232
Luczak, Richard, 229
Lueken, E. , 232
Luke, Yudell L., 315, 316
Lynch, R., 233
Lyness, J. N., 316
Ménissier-Morain, V., 52
Ma, Keju, 43

Mac Lane, Saunders, 316
Madey, Jan, 325
Mahboubi, Assia, 49, 233
Malcolm, M. A., 317
Malik, A. A., 295
Manolios, Panagiotis, 308
Maple, Carsten, 191, 192
Marchisotto, Elena Anne, 96
Marden, M., 317
Marik, Jan, 96
Marovich, S. B., 295
Marsden, Jerrold E., 156
Marshak, U., 317
Martin, Milo M.K., 348
Martin, Ursula, 47, 48, 56, 57, 60, 178, 204, 214
Martin, W.A., 350
Mason, Ian A., 60
Massey algorithm, 19
Mathews, J. , 233
Mathias, R., 272, 273
matrix adjoint, 11
matrix Berlekamp, 8,9
matrix block-Hankel, 8
matrix characteristic, 7
matrix coefficient, 13-15
matrix computation in finite fields, 20
matrix computation in semirings, 20
matrix computations, 20
matrix condition, 10
matrix definite, 7
matrix dense, 20
matrix determinant, 7, 10, 11
matrix displacement rank, 13
matrix eigenvalues, 20
matrix finite field, 8
matrix Frobenius normal form, 7
matrix Hankel, 8
matrix Hermite form, 16
matrix Hermite normal form, 7
matrix integrability, 8
matrix integral domain, 8
matrix largest invariant factor, 10
matrix Massey, 8,9
matrix minimal polynomial, 7
matrix minimum polynomial, 19
matrix multiplication, 20
matrix normal forms, 16
matrix parallel computation, 20
matrix parallel normal form algorithms, 16
matrix probablistic square determinant, 19
matrix rank, $7-9,17,19$
matrix rational canonical form, 7
matrix rational computation, 20
matrix singular, 8
matrix singular block Toeplitz, 15
matrix singular values, 20
matrix Smith form, 16
matrix Smith normal form, 7
matrix sparse, 6
matrix square, 8
matrix structured, 6, 20
matrix Sylvester, 13
matrix symmetric, 7,11
matrix Toeplitz, 8,13
Matthews, David, 55
Mavromatis, H. A., 233
May, John, 30, 31
Mayr, H., 227
Maza, Marc Moreno, 230, 268, 317, 318
McCarthy, G. J., 318
McClurg, Jedidiah R., 57, 58
McJones, Paul, 233
McLean, Michael, 166
Medina-Bulo, I., 49
Meijer, Erik, 47
Melachrinoudis, E., 234
Mertens, I., 327
Mielenz, Klaus D., 318, 319
Mignotte, M., 267
Mignotte, Maurice, 318
Mikhlin, S. G., 320
Millen, Jonathan K., 319
Miller, G. F., 295
Miller, G.L., 159
Miller, Victor, 195
Mills, Harlan D., 314
minimum polynomials, 6
Miola, A., 234
Mirasyedioglu, Seref, 92
Missura, Stephan A., 234
Mitchell, A. R., 320, 342

Mittal, Rajat, 39
Moler, C. B., 285, 320
Monagan, Michael, 45
Monagan, Michael B., 42, 217, 235
Montpetit, Andre, 188
Mora, T., 212, 235
More, J. J., 284, 319
Moritsugu, S., 309
Morozov, Dmitriy, 34
Morrison, Scott C., 187, 195, 258, 259
Morton, K. W., 333
Moses, Joel, 96, 97, 236
Mossinghoff, Michael J., 167
Mulders, Thom, 320
multivariable control theory, 11
Munksgaard N., 321
Munteanu, Bogdan, 61
Murray, W., 295-297, 321
Murtagh, B. A., 321
Musser, D., 164
Musser, David R., 321
Möller, H. Michael, 210
Nagata, Morio, 256
Naylor, William A., 43, 237, 238
Nehring, Michael, 168, 169
Newcombe, Chris, 61
Ng, Edward W., 40
Nicolson, P., 65
Niederreiter, H., 314
Nielson, G., 292
Nijenhuis, 321
Nikolai, P. J., 322
Nolan, G., 225
Norman, Arthur C., 97, 132, 238
Norris, Larry, 166
Norton, S., 280
Novocin, Andrew, 254
O'Connor, Christine, 349
O'Donnell, Michael J., 63
Ollagnier, Jean Moulin, 322
Ollivier, F., 239
Olver, Frank W., 322
Ortega, J. M., 323
Ostrogradsky. M.W., 323

Ostrowski, A., 98
Oussous, N. E., 219
Owre, Sam, 48, 204
p-adic lifting, 6
Padget, Julian, 237
Page, William S., 239
Paige, C. C., 323, 324
Palomo-Lozano, F., 49
Pan, Victor, 16, 17, 19, 20, 163
Panario, Daniel, 44
parallel, 15, 16
parallel homogeneous solutions, 13, 14
parallel randomized algorithm, 17, 18
Parker, I. B., 292
Parker, R., 280
Parker, R. A., 324
Parlett, B. N., 324
Parnas, David Lorge, 324, 325
Paterson, Ross, 47
Patton, Charles M., 134
Paul, Richard, 325
Paule, Peter, 350
Paulson, Lawrence C., 51
Pearcey, T., 325
Pereyra V., 325
Pernet, Clément, 170, 171
Peters G., 326
Peters, G., 326
Petitot, Michel, 240
Petkovšek, Marko, 153
Petkovsek, Marko, 69, 70
Petric, S. R., 240
Phisanbut, Nalina, 129
Pienaar, H., 303
Pierce, Benjamin C., 50
Pierce, R.S., 326
Piessens, R., 327
Pinch, R.G.E., 240
Plouffe, Simon, 351
Poli, A., 218
Poll, Erik, 61-63, 240
Polya, G., 328
Polyakov, S.P., 151
polynomial factoring, 6
polynomial factoring in many variables, 20
polynomial factoring in two variables, 20
polynomial factoring over a finite field, 20
polynomial factoring over characteristic 0,20
polynomial factoring, Berlekamp, 15
polynomial factoring, finite field, 15
polynomial factoring, univariate, 15
polynomial zero approximation, 20
Portier, Natacha, 117, 168
Pott, Sandra, 191, 192
Powell, M. J. D., 282, 328
Pratt, Vaughan R., 328
preconditioning, 6
Press, William H., 329
probablistic square matrix determinant, 19
products of matrices, 20
products of vectors, 20
Pryce, J. D., 329
Purtilo, J., 241
Q-matrix, 6
Quintana-Orti, Gregorio, 330
Raab, Clemens G., 98-100
Rabinowitz, P., 283, 330
Radford, D. E., 156
Rahtz, Sebastian, 344
Rajasekaran, Raja, 110
Ralston, A., 330
Ramachandran, V., 159
Ramakrishnan, Maya, 331
Ramsey, Norman, 331
randomization, 19
randomized algorithm, 11
randomized Lanczos algorithm, 11
Rath, Tim, 61
rational number recovery, 10
Ratiu, Tudor, 156
realization, 11
Redfield, J.H., 331
Reed, Mary Lynn, 4
Reid, J. K., 282
Reinaldo, Ernesto, 191
Reinsch, C., 346
Reinsch, C. H., 331
Renka, R. L., 280, 331, 332
resultant methods, 20

Reutenauer, Christophe, 332
Reynaud, J.C., 288
Reznick, Bruce, 332
Rheinboldt, W. C., 323
Rich, Albert D., 91, 92, 100, 133, 332, 333
Richardson, Dan, 333
Richtmyer, R. D., 333
Riem, Manfred, 188
Riggle, Mark, 63
Rioboo, Renaud, 52, 231, 241, 242, 312, 317, 333, 334
Risch, Robert, 101, 102
Risler, J.J., 313
Ritt, Joseph Fels, 103, 334
Roberts F. D. K., 270
Roberts, Siobhan, 63
Robidoux, Nicolas, 242
Roesner, K. G., 243
Rolletschek, H., 160
Rosenlicht, Maxwell, 103
Rota, G. C., 272
Rote, Günter, 334
Rothstein, Michael, 104, 105, 195
Rubey, Martin, 334
Rubio, Julio, 203
Ruiz-Reina, J.L., 49
Rumpf, D. L., 234
Rutishauser, H., 334, 335
Salvy, Bruno, 83, 130, 183, 243, 244
Samadani, M., 164
Saunders, B. David, 6, 15, 16, 18, 33, 106, 166, 169, 244
Saunders, M. A., 297, 321, 323, 324
Sayers, D. K., 298
Schü, J., 244
Schafer, R.D., 335
Scheerhorn, A., 215, 300
Schittkowski, K., 304
Schmitz, K., 33
Schnabel, R. B., 284, 285
Schneider, Carsten, 144-148, 151, 152
Schoenberg, I. J., 335
Schoenhage, A., 335
Schonfelder, J. L., 336
Schoof, R. J., 313

Schreitmueller, S., 303
Schwarz, F., 245
Schwippert, W., 184
Scott, M., 279
Secrest, D., 339
Segletes, S.B., 41
Seidenberg, Abraham, 105, 106
Seiler, Werner Markus, 245-248, 336
Sendrier, N., 173
Senechaud, P., 250
Shand, D., 60
Shannon, D., 248
Shepard, D., 336
Shirayanagi, Kiyoshi, 336
Shoup, Victor, 44, 113, 121
Siebert, F., 250
Simpson, R. B., 317
Sims, Charles, 3
Singer, Michael F., 75, 106, 162, 337
singular block Toeplitz, 15
singular linear systems of equations, 20
Sinor, Milan, 232
Siret, Y., 196
Sit, Emil, 249
Sit, William Y., 248, 337
Sivaramakrishnan, Kartik, 167
Sjöberg, Vilhelm, 50
Slagle, J., 106
Smedley, Trevor J., 249
Smith canonical form, 6
Smith form matrix, 16
Smith normal form, 11
Smith, B. T., 337
Smith, Derek, A., 280
Smith, G. D., 338
Smith, Jacob, 249
Smolitsky, K. L., 320
Sobol, I. M., 338
Soiffer, Neil Morrell, 68
Solé, Patrick, 74
Solodovnikov, A.S., 308
Sparse diophantine linear problems, 6
sparse linear system solver, 19
sparse linear systems, 20
Squire, Jon S., 135, 136
Stay, Mike, 46

Steele, Guy L., 250, 338
Stefanus, L. Y., 89
Stegun, Irene A., 266
Stehlé, Damien, 65
Stein, William, 206, 243
Steinbach, Jonathan M., 258, 259
Steinberg, S., 219
Sterk, Hans, 189, 191
Stewart, G. W., 320
Stewear, David, 65
Stichtenoth, H., 293, 338
Stinson, D.R., 339
Storjohann, A., 145
Storjohann, Arne, 6
Stoutemyer, David R., 38
Stroud, A. H., 339
Sturm, Thomas, 55
Sundaresan, Christine, 195
Sutor, Robert S., 195, 222, 223, 251, 252, 257, 258
Swarztrauber, P. N., 339, 340
Sweedler, M., 248
Sweet, R. A., 339
Sylvester matrix, 13
Symm, G. T., 307
symmetric linear systems, 11
Tait, P.G., 340
Taivalsaari, Antero, 340
Takayama, Nobuki, 224
Tarquinio, T., 303
Temme, N. M., 340
Temme, N.M., 154
Temperton, C., 340, 341
Terelius, Bjorn, 107
Teukolsky, Saul A., 329
Théry, Laurent, 51
Thiery, Nicolas M., 352
Thompson, J., 303
Thompson, Simon, 62, 63, 252
Thurston, William P., 341
Timochouk, Leonid, 252
TO
Berlekamp
Rissanen, 9
Dickinson

Coppersmith, 9
Massey
Rissanen, 9
Rissanen
Dickinson, 9
Wiedemann
Coppersmith, 15
Kaltofen, 15
Lanczos, 6
Toeplitz matrix, 6, 13
Tonks, A., 185
Touratier, Emmanuel, 253
Tournier, E., 196
Trager, Barry M., 74, 107, 108, 122, 139, 162, 195, 197-199, 211, 221, 224, 257
Trevisan, Vilmar, 271
Tsujii, S., 306
Turner, W. J., 6
Turner, W.J., 33
Ulmer, Felix, 77
Valente, T., 33-35, 112
van der Hoeven, Joris, 253
Van Dooren, P., 342
van Hoeij, Mark, 45, 111, 253, 254, 342, 351
van Leeuwen, André M.A., 67
Van Loan, C., 342
Van Loan, Charles F., 299
Van Roy-Branders, M., 327
Vasconcelos, Wolmer, 255
Vazquez-Trejo, Javier, 153
Victor, Bret, 68
Villard, Gilles, 6, 9, 10, 22, 33, 250
von Mohrenschildt, Martin, 76, 92
von Seggern, David Henry, 336
von zur Gathen, Joachim, 43, 44, 119, 125, 293

Wörz-Busekros, A., 3
Würfl, Andreas, 109
Wait, R., 342
Wang, Dongming, 255, 342
Wang, Paul S., 45, 138, 139, 255, 271
Ward, R. C., 343
Watanabe, Shunro, 256

Watt J M., 302
Yang, Xiang, 39
Watt, Stephen M., 39, 130, 166, 176, 187, Yang, Zhengfeng, 27-31, 113, 114, 167, 169-

192, 218, 222, 223, 256-259, 343
Weber, Andreas, 77, 234, 259-262
Wei-Jiang, 262
Weil, André, 343
Weil, Jacques-Arthur, 184
Weispfenning, V., 274
Weisstein, Eric W., 343
Weitz, E., 344
Wellens, Pieter, 314
Wells, Joe, 67
Wesseling, P., 344
Wester, Michael J., 232, 262, 263
Wexelblat, Richard L., 263
Wheeler, James T., 157
Whitney, A., 335
Whitney, Hassler, 155
Wicks, Mark, 344
Wiedemann algorithm, 6, 11, 15, 19
Wiedemann block projections, 6
Wiedemann coordinate recurrence algorithm, 15
Wiedemann Kalman realizations, 6
Wiedemann Lanczos recurrences, 6
Wiedemann pre-conditioners, 6
Wiedemann, Douglas H., 19
Wiley, J.M., 116
Wilf, 321
Wilf, Herbert S., 153
Wilkinson, J. H., 326, 346
Williamson, S.G., 345
Wilson, David, 54, 132
Wilson, R., 280
Winkler, Franz, 232
Wisbauer, R., 347
Wityak, Sandra, 263
Woerz-Busekros, A., 347
Wolberg, J. R., 347
Wootton, Aaron, 110
Wright, M. H., 296, 297
Wu, Min, 75
Wu, W.T., 347
Wynn, P., 348
Yan, Tak W., 64

Yap, Chee Keng, 264
Yapp, Clifford, 264
Yorgey, Brent, 50
Youssef, Saul, 47
Yuhasz, George, 8, 34
Yui, N., 112, 113
Yun, David Y.Y, 139, 216, 217, 264
Zakeri, Gholem-All, 96
Zakrajsek, Helena, 348
Zdancewic, Steve, 348
Zeilberger, Doran, 153
Zenger, Ch., 264
Zengler, Christoph, 67
Zhang, Fan, 61
Zhi, Lihong, 25-31, 113, 167, 169, 349
Zima, E.V., 145
Zima, Eugene V., 152
Zimmermann, Burkhard, 350
Zimmermann, Paul, 65
Zippel, Richard, 265
Zwillinger, Daniel, 265

